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PREFACE 

A comprehensive multispectral:program devoted to the advancement of state- 

of-the-art techniques for earth resources’surveys has been a continuing program 

at the Environmental Research Institute of Michigan (ERIM), formerly the .Willow 

Run Laboratories of The University of Michigan. The basic objective of this multi- 

disciplinary program is to develop remote sensing as a practical tool to provide 

the user with processed information quickly and economically. 

The importance of providing timely information obtained by remote sensing to 

such people as the farmer, the city planner, the conservationist, and others con- 

cerned with problems such as crop yield and disease, urban land studies and de- 

velopment, water pollution, and forest management must be carefully considered 

in the overall program. The scope of our program includes: (1) extending the 

understanding of basic processes; (2) discovering new applications; (2) developing 

advanced remote-sensing systems; (4) improving fast automatic data processing 
systems to extract information in a useful form; and (5) assisting in data collection, 

processing, analysis and ground truth verification. The MIDAS Program, with its 

improved data processing capability, applies directly to No. (4). 

The overall program is guided by Mr. R. R. Legault, a Vice President of 

ERIM and Director of the Infrared and Optics Division. Work on this contract was 

directed by J.D. Erickson, Head of the Information Systems and Analysis Depart- 

ment, R. McLaughlin, Head of the Processing Systems Development Section and by 

F.J. Kriegler, Principal Investigator. Volume I of this report covers the system 

description in detail.’ Volume II discusses several forms of advanced processing 
and applications requirements. 

In addition to providing the text, the authors’ individual contributions were as. 

follows: Dempster Christenson, Vernon Smith, and Michael Gordon provided sys- 

tern programming and diagnostic software; Roland Kistler, Rowland McLaughlin, 

and Seymour Lampert provided the detailed design and performed system check- 

out; Robert Marshall aided in overall system configuration and organized this re- 
port. Michael’Schlansker and Prof. Daniel Atkins, consultants from the Electrical 

Engineering Department of The University of Michigan, also contributed to this 

program by developing the APL simulation of the processor, and by developing the 

. . . 
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design approach to the pipeline divider sub-system in the preprocessor. The 

authors wish to acknowledge the direction provided by Mr. R.R. Legault and Dr. 

J.D. Erickson. Outstanding contributions were made by the following persons: 

John Baumler, Clyde Connell, William Juodawlkis, Robert Pierson, Cary Wilson, 

and Nancy Wilson for their efforts in system construction; 

This report describes the scope of and the hardware and software generated 
in the overall MIDAS program. In its development certain commercial products 
were utilized and are identified in this report in order to specify adequately the 
conditions and products used in the research effort. In no case does such identi- 
fication imply recommendation, endorsement, or evaluation .of these products by 
NASA, nor does it imply that such products are necessarily the only ones or the 
best ones available for such applications. In many cases equivalent products are 
available and would probably produce equivalent results. 
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MIDAS, PROTOTYPE MULTIVARIATE INTERACTIVE DIGITAL ANALYSISgYSTEM 
FORXARGE AREA EARTH RESOURmS SURVXYS 

Volume I: System Description 

THE MIDAS PROGRAM 

1.1 SUMMARY. 

The MIDAS system, while larger than its implementation in concept, has now been im- 

plemented as a prototype processor for remotely sensed data. With it, a user may load data 

f.rom tape into the system, examine and analyze various portions of the scene using the color 

display or color printer and then perform corrections, enhancements or recognition operations 

on the data, obtaining these results in color maps or tabular outputs. The pipeline operates at 

a processing rate of 2 K lo5 elements/second, or less if desired, for any processing operations 

to be performed. At this rate, for example, MIDAS could classify a LANDSAT -1 or 2 frame 

of data in about 40 seconds and provide color maps in a time ranging from about five minutes 

to about an hour depending on the resolution desired. In fact, however, the time to carry out 

such a procedure could range between a minimum of about one-half hour to about four hours, 

depending for the most part on the user’s familiarity with his problem and the data. MIDAS 

now provides a valuable tool for multispectral processing, enabling and facilitating progress 

in applying remotely sensed data to the analysis, management and utilization of natural re- 

sources. 

1.2 INTRODUCTION 

With the launching of the Earth Resources Technology Satellite (now LANDSAT-1) in 1972 

and the manned Skylab with its Earth Resources Experiment Package in 1973, the NASA Earth 

Resources Survey Program began employing large-scale space technology to add to the prer 

vious programs of remote sensing from aircraft. 

Earth resources information systems to aid in the inventory, allocation, and management 

of Earth’s recources make use of a combination of disciplines. These systems employ a priori 

knowledge of common practice and ecological relationships, modern sensors and data pro- 

cessing equipment, information theory and processing methodology, communications theory and 

devices, space and airborne vehicles, and large-systems theory and practice. There are, of 

course, many different remote sensing techniques -e.g., gravity and seismic sensors; acoustic 

sensors; static magnetic- and electric-field sensors; gamma- and x-ray sensors; sensors of 

electromagnetic radiation in the ultraviolet, visible, infrared, microwave, and radiofrequency 

regions of the spectrum. The remote sensing techniques which can be used from aircraft or 

spacecraft are, however, limited to sensing electromagnetic radiation from the ultraviolet 

through radio frequencies. The basic foundation of remote sensing is the use of these trans- + 
ducer and sensor outputs to identify automatically materials on the Earth’s surface and to 

determine their conditions. This is referred to as the discrimination capability of remote 

sensing. 



As used here, discrimination means the successive classification of larger classes of 

materials into smaller, more finely divided subclasses, as in discrimination of conditions 

,within a type or species after the type or species of the identified object is established. The 

main concern is the extent to which these successively finer classifications can be made auto:-. 

matically, if they can be made at all.. The division into classes is based upon information sensed 

from a distance as opposed to in situ contact measurements. -- The economy and convenience of 

the information system will vary directly with the degree to which these classifications can be 

made automatically from remotely sensed data. 

The rationale for automatic processing of multispectral scanner data is summarized as 

follows: 

(1) Automatic processing can be done in quasi-real time, that is, before the information 

content of the data can significantly decay in value. 

(2) Automatic processing of large volumes of data can be accomplished more cost-effec- 

tively (not necessarily more cheaply) than manual processing and interpretation but 

requires non-general-purpose computers for operational systems. 

(3) Although information of the desired kind may be scanty, the data volume is exceedingly 

high. Automating the reduction of this data volume to information frees people for 

other creative tasks. 

(4) Automatic processing offers a potential for a greater consistency of results with ob- 

jective classification standards. Here, some would also mention its higher accuracy 

as compared to manual processing. 

(5) Derived information from automatic interpretation is in a form for quick and easy 

integration with other data bases in automatic information systems such as for auto- 

matic mapping and compilation of statistical records or summaries. 

(6) Multispectral scanner data are generated and recorded in electronic form intended for 

automatic processing, in contrast to photography in which film is the recording medium 

(which has poor radiometric fidelity compared to that needed in automatic processing). 

Basic to this process of classification or discrimination, is the concept of a signature. In 

general, a signature is any collection of observable features of a material or its condition that ,. 
can be used for precise classification. The features that make up a signature may all be ob- 

served simultaneously or in a sequence of observations spread over a considerable time period. 

Variations in four characteristics of electromagnetic radiation can be used to effect dis- 

crimination between signatures. They are: (1) spectral variations (i.e., variations in radiant 

power as a function of wavelength); (2) spatial variations; (3) polarization variations; and (4) 

time variations, which can be of two types. The first type of time variation consists of changes 

rapid enough to cause a Doppler shift in reflected radiation. The second type consists of 

slower changes such as diurnal and seasonal changes. Each of these four variations in radiant 

power may be employed separately in discrimination, even though they interact with each other. 

2 



However, in the research reported here, the emphasis is on spectral discrimination, because 

some powerful techniques have been developed which exploit the spectral yariations. 

A basic element of spectral discrimination theory is the realization that spectral signa- 

tures cannot be completely deterministic. That is, spectral reflectivity and emissivity mea- 

surements of natural objects exhibit some dispersion around a mean value (i.e., spectral signa- 

tures are statistical in character). This should be expected, since it is well known that taxon- 

omy based on any characteristics shows dispersion. Thus, as we will use the term, a spectral 
signature is a probability density function (or set of such functions) which characterize the 

statistical attributes of a finite set of observations of a material and can’be used to classify 

the material or its condition to some degree of fineness. 

In this report, we are specifically concerned with nonphotographic imaging sensors which 

operate in the ultraviolet, visible, and infrared regions of the spectrum, i.e., multispectral 

scanners. 

MIDAS, which stands for gultivariate gteractive gigital Analysis f+tem, represents a 

breakthrough in the field of multispectral scanner image analysis by providing a low-cost 

regional center capability for user-oriented, interactive, near-real-time, digital analysis to 

produce thematic mapping with instantaneous or multitemporal data. The system is shown in 

Figures 1, 2 and 3. MIDAS is 10 to 40 times cheaper, and three to five times faster than 

ILLIAC IV, and is reliable in operation. MIDAS accepts data from multispectral scanners in 

the form of high-density digital tape, computer-compatible tape, or analog tape, and makes 

use of proven multispectral processing techniques (including signature extension) within an 

innovative hardware approach resulting in a cost-effective, user-controlled system for multi- 

spectral analysis and recognition. Its hardware and software are intended to require a mini- 

mum amount of instructional training for successful operation. MIDAS is intended to provide 

accurate multispectral analysis for applications in disciplines such as agriculture, regional 

planning, forestry, energy and mineral resource location, pollution detection, water resources 

management, and others. Features may be extracted on the basis that their radiation proper- 

ties are spectral, spatial, temporal, and (possibly) polarization dependent, thus giving a very 

general and powerful capability.. 

The first MIDAS was built as part of the NASA Advanced Applications Flight Experiment * 
program by EHIM to demonstrate the unique advantages of a modular, special-purpose multi- 

spectral processor which offers a wide selection of high-performance subsystems, peripherals, 

and features. In this machine the parallel digital implementation capabilities of a low-cost 

processor are combined with a midi-computer to achieve near-real-time operation of a com- 

plete processing system that includes multiple, user-selectable, preprocessing functions and 

color displays. If provided in high density form, a LANDSAT frame of 7.2 x lo6 pixels (each 

consisting of four values of 8-bits) could be classified in about 40 seconds on MIDAS due to 

its 200,000 pixel/set peak classification rate. MIDAS, however, is not limited to a frame at a 

3 



FIGURE 1. THE MIDAS MIDI-COMPUTER AND SPECIAL-PURPOSE HARDWARE CONF’IGURATION 



FIGURE 2. CRT MONITORS, INPUT KEYBOARD, TRACKBALL, AND INKJET PRINTER 
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FIGURE 3. THE TWO DIVA PQ-MEGABYTE STORAGE DISKS 



time nor to four spectral bands at a time. Initial use demonstrates the effectiveness of this 
innovative approach in contrast with that of using the large general-purpose computers pres- 

ently employed in the Earth Observations Program. 

A rationale for MIDAS can be simply stated. A particularly important and easily over- 
looked aspect of applying a remote-sensing, multispectral system to aid in mapping crops, 

detecting pollution, or locating some ecological disturbance is that the data can be processed 

to provide the proper information to a user in a time short enough to meet his needs. Unfor- 

tunately, some ongoing programs do not address this aspect of the system design problem, 
for reasons which are rarely clear. 

The magnitude of the discrepancy between the ability of a sensor to gather the data and the 

ability of a general-purpose computer to process it becomes the next aspect of the problem to 

be assessed. This enormous mismatch can probably be best appreciated by considering a brief 
numerical example. An airborne scanner will, typically, gather data over a 32 to 48 km 

flight line in about 15 minutes and record it on one reel of magnetic tape. A general-purpose 

digital computer can be trained and can classify this data in a time about 100 times longer 
than it took to collect it. Thus, the data collected in 15 minutes will require 1500 minutes of 
processing. This would amount to three eight-hour days of processing. Given one such com- 
puter to process the data, the aircraft should only be used for six five-hour sorties per year. 

For satellite systems the mismatch is worse. Clearly, the discrepancy in capabilities is un- 
acceptable. 

EHM geometrically corrects LANDSAT data by (1) rotating the data so that N-S roads 
are parallel to the edges of output displays, (2) deskewing the data to correct for Earth’s ro- 
tation effects, and (3) matching the aspect ratio of the output display and scaling the output 

image. ERIM has also received recognition for the development of computer-assisted pro- 
cedures for correlating LANDSAT and geographical reference coordinate systems. 

Another important objective of fast, low-cost but accurate processing is to facilitate con- 

trol by the user. Classification of remotely sensed data is an interactive process in which the 

person and machine must, in fact, be considered as the real processing system. It thus be- 
comes evident that well designed, interactive display and control subsystems will, in reality, 
offer the greatest gains in throughput. This also implies that the system should be considered 
as a prototype from which further refined systems may be derived for specific operational 
applications. To allow user tailoring of the operational system, modularity becomes an im- 
portant design aspect. 

The present system was conceived and constructed as a demonstration that a clearly better 
processing system will materially assist in practical, economic realization of the benefits of 
remote sensing. 

. . -.--. - - ._----. ~.-- -- ---- ..~.~ - .- .- ___ --- ---- ..__- - . ~- --.. -_ 



1.3 BACKGROUND 
The MIDAS program was to consist of two phases of development, each of a year’s duration 

in which the basic system was to be designed and manufactured and then, in the second phase, 
expanded and demonstrated. The objectives of the MIDAS program were to demonstrate 

(1) that a high throughput rate can be achieved without loss of accuracy on MSS data from 
satellites and’aircraft 

(2) that large-area surveys can be classified quickly and at low cost 
(3) a processing rate that was adequate to match the input rates from present or future 

sensors and high density-digital tapes 

(4) pictorial and enumerative results on data from a wide range of sources 
(5) a realistic environment for reducing man-machine interaction without loss of accuracy 
(6) that the regional processing center concept can be built around one relatively low- 

cost (of the order of $0.5 million compared to $2-3 million for large general-purpose 
computer system) like MIDAS and serve essentially all users with different applica- 
tions 

During the first phase the classifier, a pipeline machine able to accept sensor signals 
and produce classification results, was developed and tested along with a general-purpose 
controlling system based on the DEC PDP-11/45. In the second phase a pre-processor pipe- 
line machine was added prior to the classifier and an interactive, display-based software sys- 
tem was developed to allow efficient operation and management .of the various procedures by 
a user. The design approach is summarized in Table 1. As a-result of these developments, 
MIDAS constitutes a prototype able to process data for large area surveys quickly and econ- 
.omicaLly in a quasi-operational manner or, of equal importance, a.device able to test the 

feasibility of newly proposed applications of remote sensing quickly and accurately. Sum- 
maries of the subsystem characteristics are given in Tables 2-5. 

MIDAS, at this stage of development, is a prototype in other respects. Although the soft- 

ware system, MIDOS (MIDAS Operating System) has been designed to provide an efficient 
interactive control system for a user; it will require use in quasi-operational processing, and 
in testing the feasibility of new applications, in order to realize potential processing gains. 
Another principal use for a Midas system is in its function as a prototype for peripheral sys- 
tems operating in conjunction with a large general-purpose system organized as a data-base 
and data-management center. 

MIDAS can also be considered as a prototype or a test-bed system in that it mechanizes 
only those processing procedures now known to be not only useful, but also desirable to im- 
plement in hardware. The processing pipeline is modular, in that additional processing re- 
quirements can be.met by inserting other arithmetic operators in the pipeline and by increas- 
ing or decreasing the parallelism as the need for such changes become apparent. Potential 

system additions indicated by current research and needs of various programs would include 

additional pre- and post-processor hardware for spatial array.processing and multi-temporal 
analysis. 
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TABLE 1. DESIGN APPROACH USED IN THE MIDAS SYSTEM 

Implement with: 
Commercial midi-computer and peripherals 

Commercial displays 

Special parallel-pipeline Preprocessor and Classifier 
Special high-density digital tape and analog tape input 
Special color hardcopy 

Special software system for control and interaction 

TABLE 2. FUNCTIONAL CHARACTERISTICS OF MIDAS GENERAL-PURPOSE 
COMPUTER AND SOFTWARE 

General-Purpose Computer: 
Control element, CCT, Data disk, Diagnostics 

Software: 
Image manipulation and display 
Training data labeling 

Preprocessing analysis and application 
Signature manipulation 

Classification 
Post-classification analysis with test area verification of performance 

accuracy and N levels of statistical aggregation 

Diagnostics 

9 



TABLE 3. FUNCTIONAL CHARACTERISTICS OF MIDAS DISPLAY 

Unlimited arbitrary shaped training and test sets 
Digital zoom and move 
32 colors on 512 X 512 CRT 
B&W menu with trackball cursor and user prompting 
Color level-slicing 
Solid-state memory refresh 
864 x 1314-point inkjet in 90 seconds on 21.6 X 27.9 cm paper for 

“walkaway” color images 
Graphs 
Histograms 
Cluster plots 

TABLE 4. FUNCTIONAL CHARACTERISTICS OF MIDAS PREPROCESSOR 

User-selectable options on 16 channels 
1-D and 2-D multiplicative and additive corrections 
General matrix transform for linear combinations 
Ratios of eight transform data variables 
All at 2 x lo5 pixels/set rate 
Diagnostic bus for intermediate results 

TABLE 5. FUNCTIONAL CHARACTERISTICS OF MIDAS CLASSIFIER 
Bayesian decision rule (maximum likelihood); easily changed 

Multi-modal distributions (sum of Gaussians) 
(1 + E) pass classification into 16 + 1 classes or 8 + 1 classes 
Strip processing, not frame limited 
Rate is 2 X lo5 pixels/set or landsat frame in 40 seconds 
Diagnostic bus 

10 
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Lastly, MIDAS and arithmetic structures based on MIDAS, have been and can be considered 

as a prototype for sensor platform processing as a means of compressing telemetry data. This 

may take the form of pre-processing sensor data into a smaller amount of almost equivalent 
data by linear and non-linear transformations or by processing the data into classified results 

encoded for transmission. Such applications may be tested or developed on MIDAS as a means 

of proving such techniques or as a means of specifying the operations which may be performed 

effectively in a spacecraft. Such investigations are already being done. 

1.4 AN OVERVIEW OF THE SYSTEM 

Some of the demonstrated characteristics of MIDAS are illustrated in the following dis- 

cussion. The speed of the pipeline processor is shown by the test oscilloscope traces in Fig- 

ure 4. Two pulse sequences from the master pipeline clock are shown in the dual trace pictures. 
The master clock is obtained from a crystal oscillator through a chain of count down circuits. 

The clocking rate of the pipe may be selected by computer control during the initial setup of 

classifier parameters. The clock is described in Section 2.5.1 and shown in Figure 30. The 
fastest rate is illustrated in the traces of Figure 4. Figure 4(a) shows the pulses on a hori- 
zontal time scale of 1 &sec/cm. The upper trace pulse has a period of 5 psec (the basic pipe- 
line rate of 200,000 pixels per second) while the lower trace contains 16 axis crossings in the 

same 5-psec period. This is the time required to perform the function at any station in the 
pipe. Figure 4(b) shows the same two-pulse trains on a horizontal time scale of 2 psecs/cm 

and contains two processing steps. The clock is restarted (or bursted) each time a pixel is 

sent from the data source. In this case the data is being sent at the rate of 1 pixel each 13 
&secs. In this illustrated case the pipeline processor is waiting 8 &secs for data and then 

processing the data in 5 @ecs. 

The interactive process of using MIDAS is illustrated in Figures 5 through 11. Figure 5 
shows the master menu displayed on the small black and white CRT (see Figure 2) at the start 
of a data processing session. Assume that the desired data set has been loaded onto one of 
the 29-megabyte high-speed discs shown in Figure 3. The cursor (the cross near the middle 

of Figure 5) is moved by means of the track ball and is used to select “Data Display” by 
superimposing the cursor upon the box to the left of “Data Display” on the menu. The data 
display overlay is then read into the computer and the menu shown in Figure 6 is displayed. 
In this figure are also shown the required display parameters fed into the system by the user 
via the display keyboard (see Figure 2). An automatic-level.-setting program level-slices the 
data into categories of grayscale. Figure ‘7 shows the resulting display of the raw data set 

on the large color CRT. 

The next step returns the user to the master menu (Figure 5) at which time “Field Manip- 
ulation” is selected. This program overlay is brought into the computer, and the capability 
to outline training fields on the raw data image is activated. The fields are designated by 

moving the cursor to the vertices of an irregular figure (called a polygon) and depressing the 
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(a) 1 pixel, followed by dead time 
(horizontal time base: 1 psec/cm) 

(b) Interval of 13 psec between pixels caused by limitations of input device 
(horizontal time base: 2 I.rsec/cm) 

FIGURE 4. OSCILLOSCOPE TRACES ILLUSTRATING PROCESSING RATE OF 
5 MICROSECONDS PER PIXEL 
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FIGURE 5. MASTER MENU DISPLAYED UPON ENTRY TO MIDOS 
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FIGURE 6. DATA DISPLAY MENU MTH PARAMETERS. 
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F’IGURE.7. RAW DATA DISPLAY ON COLOR CRT 
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enter button on the track ball cursor control. The figure is closed by pushing the enter button. 
twice at the same vertex. Figure 8 shows a polygon outlining the large lake near the lower 
right edge of the figure. All desired training data would be designated sequentially in this 
manner. 

The next step is to return again to the master menu and select “Signature Manipulation.” 
This overlay calculates the statistics which describe the data contained in the training data 
sets outlined as described above. Figure 9 shows the results which are displayed on the black 
and white CRT as the statistics for each signature are determined. 

Following this, the master menu is again used to choose “Classification and Ratio’* as the 
next overlay to be called into the computer. This program accesses the disc file in which the 
signatures have been stored. The desired signatures are chosen from the-display, and the 
MIDAS special purpose pipeline hardware is loaded with the appropriate coefficients from the 
statistics associated with each signature selected. 

When classification is complete (in the order of less than a minute, depending on the size 
of the data set) control is once again returned to the master menu. “Data Display” is again 
chosen, and in a manner similar to setting up the raw data display, a classification map is 
shown on the large color CRT (Figure 10). If a hard copy of this classification map is desired 

the inkjet plotter may be used to produce a color image on paper. Such a hard copy map of 
the raw data is shown in Figure 11. 

1.5 CONCLUSIONS AND RECOMMENDATIONS 
The MIDAS system could be improved, possibly by a factor of 3, by the use of Speed. 

higher speed MS1 and LSI technology. However, the present speed is adequate for classifying 
multispectral data since the principal bottleneck in such operations is the human user. Class- 
ification of a LANDSAT frame, for example, can be done in the MIDAS pipeline in about 40 
seconds, but about an hour may be required to go through the machine-aided but human- 
judgment-dependent analysis and training operations. Little improvement in throughput can 
be gained from increased hardware speed when the user is the limiting element. 

Review of the software programs and procedures in actual use of the system would best 
serve to streamline human operations which in turn would produce significant increases in 
speed, possibly by a factor of four. This is planned in the process of using the system. 

Spaceborne Processing. The pre-processor and classifier pipelines of MIDAS can be put 
to effective use in on-board spacecraft processing as a means of bandwidth compression and/ 
or pre-transmission analysis. Compression by a factor of two or three may be had from the 
pre-processing operation. Compression by factors of four to five may be had from the classi- 
fication process, in that a 4- or 5-band, 8-bit pixel is compressed to a 4- or 5-bit, single code 
word. An overall data compression between 10 and 20 may be obtained.’ 
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FIGURE 8. RAW DATA SHOWING POLYGON ENCLOSjNG A TRAINING SET 
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: FIGURE 9. SIGNATURE STATISTICS 
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FIGURE 10. SAMPLE CLASSIFICATION MAP FROM COLOR CRT 
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FIGURE 11. SAMPLE CLASSIFICATION MAP FROM INKJET PRINTER 
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A significant problem exists in such usage, however, and this is the need for in situ or a -- 
aposteriori processing. Interaction by a user to specify signatures and areas of interest is 

required, thus making the compression gain,dependent on the overall system configuration in-: 

eluding the user. 

Bulk analysis of a fram,e prior to transmission seems feasible. In this manner a review 

of a frame for cloud cover, for example, could be done on-line and the system could be set to 

respond with a suitable code to convey only this information, or using a run length code pro- 

cedure, to transmit only non-cloud data, if such were desired. 

Rates of 100 x lo6 bits/second and higher are needed for some sensor systems. Depending 

on the number of bands and the element rate, an advanced technology MIDAS could process such 

data. MIDAS presently processes 25 x lo6 bits/second (16 channels X 8 bits X 2 x 109. 

Using the same organization and faster components, data at a rate of 100 X lo6 bits/set and 

could be processed. 

A Prototype. MIDAS is a prototype. The system is aimed at use in an average region- 

al processing center, sized to meet the throughput needs for an area of l/5 to l/10 the contin- 

ental U.S.A. Its use in smaller or larger systems may be anticipated, yielding systems with 

more arithmetic modules or less depending on the station size and regional demand. A great 

portion of effort needed yet is to match the machine to the user. The present software system 

is a first-pass design in what must be considered an iterative design process. Also, some 

portions of the analysis related to optimum linear and ratio transformations, for example, are 
not well enough understood at present to fix the shape of analytic programs, although the hard- 

ware now exists. There is a need thenfor study of an iterative human-factor process and also 

of the analytic nature of data transformation for subsequent classification. 

Finally, with the recent advent of micro-processors able to operate in the speed range 

below 100 nanoseconds, it seems likely that the MIDAS pipelines could be fabricated in the 

future using this technology to obtain smaller size and greater economy, using, basically, net- 

works of microprocessors. MIDAS, however, will provide valuable information to obtain a 

refined system architecture for both hardware and software improvements for a period of 

several years, thus functioning as a true and useful prototype system. . 

Advanced Processing. Recent developments indicate the need for greater accuracy in 

classification and in geometric correction; which creates the need for overlaying imaged data 

from various times of the year and from various sensors, and providing image output to some 

specified geometric accuracy. Given data which is overlaid, MIDAS can classify or enhance 

such data with no modifications, assuming the spectral dimensionality of the data is not greater 

than 16 (as would occur for four LANDSAT images, for example). Also, enlargement of MIDAS 

capacity to greater than 16 dimensions is not a major change, if needed. 
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However, the integration of geometric and spectral image processing is very necessary 

and will require expansion of a MIDAS-like system. This can be done in a gradual, modular 

manner using MIDAS as a base system. It thus appears that evolutionary development of such 

forms of processing can be facilitated with MIDAS affording a test-bed facility well matched 

to the developments anticipated, as the use of remote sensing becomes of greater importance 

and practicality. 
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MIDAS HARDWARE 

MIDAS hardware is specially constructed to fit the needs of classifying multispectral, 

remotely-sensed data. The core of this classification task is the specially-designed classifi- 

cation pipeline (see Figure 12). Several key points along the pipeline communicate with the 

DEC PDP-11 Unibus, a single path that connects most of the other pieces of equipment in the 

MIDAS system in parallel. These other pieces of equipment, which include a DEC PDP-11/45 

CPU, core memory, and numerous I/Odevices, support operation of the classification pipeline 

by preparing its input, controlling its operation, displaying its output, and providing an easy- 

to-use interface with the human operator. The remaining MIDAS hardware-the direct sources 

of input to the classification pipeline -includes high density digital tape and analog devices. 

A more detailed description of the classification pipeline section of the MIDAS system is 

shown in Figure 13. The figure shows the three specially-designed processors that comprise 

the pipeline: the Data Path Selector, the Preprocessor, and the Classifier. The additional 

hardware in the figure includes a high density tape unit (HDT), an analog-to-digital (A/D) unit, 

a digital-to-analog (D/A) unit, and DEC DRll-C and DRll-B standard Unibus interfaces. In 

addition to enabling operation of the classification pipeline, this hardware provides a mechanism 

for transferring multispectral data among several different storage devices. 

The pipeline operation is outlined below, followed by descriptions of the Data Path Selector, 

the Classifier and the Preprocessor. 

2.1 CLASSIFICATION PIPE LINE 

The classification pipeline, shown by the wide arrowed lines inFigure 13, is the core of 

the high-speed classification process. The pipeline physically consists of a one-way data flow 

through the three special high-speed digital processors: the Data Path Selector, the Prepro- 

cessor, and the Classifier. The Data Path Selector, a data-routing piece of hardware, performs 

the first step in the pipeline; it supplies the multispectral data to the remainder of the pipeline. 

The data supplied consists of picture elements or “pixels” where each pixel can be considered 

a vector of up to sixteen 8-bit data bytes or channels. The data comes from one of three sources: 

the Unibus via the general purpose Direct Memory Access (DMA) interface, a DEC DRll-B; 

the high density tape unit; or an analog tape unit. These three alternate inputs are shown by 

the medium wide lines in Figure 13. The data input selected proceeds through the Data Path 

Selector to the Preprocessor where processes such as scaling, angle correction, linear com- 
binations, and calculations of ratios prepare the data for the key step, classification. 

The actual classification of the data into categories is performed by the Classifier. Within 

the Classifier, the single pipeline temporarily divides into four parallel pipelines to perform 

fast simultaneous matrix multiplications. These multiplications are processed further, and the 

results are fed sequentially into a decision process wherein each former pixel is classified 

into one of up to 16 pre-determined categories or into a seventeenth class, meaning “none of 
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these.” For each pixel that entered the pipeline at the Data Path Selector, only five bits, a 

category code, emerge from the Classifier. These five bits travel, by way of the Diagnostic 

Bus and the DRll -B#3, to the Unibus, along the Unibus to core memory, and from core memory 

to their final destination, the Diva disk. The Diva disk holds the data which may later be dis- 

played by any of the number of output devices, including the RAMTEKColor Display and the 

Color Inkjet Plotter. 

The pipeline can classify up to 200,000 pixels in this manner every second. The very fact 

that the structure is a parallel pipeline accounts for this high speed. The term parallel refers 

to the four parallel branches of the pipeline within the Classifier. This parallel structure 

makes possible the high speed matrix-multiplication operation. The term “pipeline” refers to 

the assembly line form of operation for the whole process. In general, a pipeline operates as 

follows: the many functions performed along the pipeline are divided into k sequential time 

steps, all of equal time duration. This division is illustrated for the general case in Figure 14. 

At any one instant,k separate stages are operating on k separate data values (Figure 14a). One 

time-step later (Figure 14b), each stage supplies its output to the next stage for further pro- 

cessing, and a new data value enters the first stage. This is accomplished by having a register 

between each operational stage into which the output is strobed; it is done simultaneously at 

all stages, thereby locking or latching up the results of each stage. These “latched” data then 

serve as input to the next stage, while another data value enters the first stage. A pixel is de- 

fined as always having 16 data values, therefore requiring 16 strobes or clock pulses to enter 

a pixel into the pipeline; if fewer than 16 data channels are available the hardware in the Data 

Path Selector provides the necessary filler data. The need for 16 clock cycles to enter a pixel 

is dictated by the fundamental operation of the Classifier and its clocking operation. The de- 

tailed description of the Classifier (Section 2.3) will explain this point. 

The master clock for the MIDAS pipeline resides within the Classifier. The clock controls 

the stepping of data through the pipeline and the addressing of coefficients in the random access 

memories (RAM’s). Capable of operating in four fundamental modes with seven possible in- 

ternally controlled frequencies, the clock also allows external control of the frequency. It 

operates asynchronously, its sequencing initiated for each entering pixel by the external data 

source. 

Operation of the pipeline as described above requires two additional steps: program-con- 

trolled setup before the process;and user -controlled diagnostics before, after and during the 

process. Setup,in the pipeline consists of loading several RAM’s in the Preprocessor and the 

Classifier with computer-generated numbers, numbers which include information about the data 

set and which specify the criteria for classifying the pixels into the particular categories. Di- 

agnostics consist of readback of data from registers in the Preprocessor and the Classifier at 

several key points in the pipeline, yielding either results of mid-process calculations or clues 

for debugging or trouble-shooting. This information, accessed via two multi-port diagnostic 
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buses,‘is available both to the CPU and directly to read-out devices. An example of usage of 

the diagnostics subsystem is the optional routing of ratios of channels, calculated in the Pre- 

processor, to the RAMTEK Color Display. 

2.2’ DATA PATH SELECTOR 

The special-purpose hardware selector though designed specifically for the classification 

process, is capable of accomplishing some additional functions. In addition to playing a role 

in the pipeline, the selector can, by setting up the appropriate paths, transfer multispectral 

data among several different storage devices. 

The Data Path Selector, which receives its instructions from the CPU via the DRll-C 

interface, can set up various alternate data paths, including: 

(1) Unibus to Pipeline (via the DRll-B #l) 

(2) HDT to Pipeline 

(3) A/D to Pipeline 

(4) Unibus to HDT 

(5) Unibus to D/A 

(6) HDT to Unibus 

(7) A/D to Unibus 

The first three alternate pathways, described in the preceding paragraph, enable operation 

of the pipeline with input coming from either the Unibus, the high density tape, or an analog 
tape. The last four pathways enable transfer of data from either the Unibus, a high density 

tape, or an analog tape to any one of these same storage devices. In these last four cases, the 

data that comes from, or is routed to, the Unibus usually is data from what is commonly called 

a “computer-compatibletape” (CCT), a standard-format tape compatible with DEC’s TUlO 

magnetic tape drive as well as with IBM drives. 

The control section of the Data Path Selector is responsible for receiving, interpreting, 

and sometimes routing most of the computer -generated control instructions. These instruc - 

tions specify 

(1) data paths, as described in the last paragraph 

(2) parameters for selective gating of data from any of the input sources 

(3) channel and frequency information for the A/D 

(4) frequency and mode information for the Classifier clock 

(5) other control details 

The instructions are sent by the computer to the Control section via the Unibus and the DRll -C 

interface (the data path can be traced in Figure 13). 

Since all the sources of data operate asynchronously with the MIDAS master clock, the 

data path selector must accept data from the data source using the source’s clock and transfer 
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it as input to the pipeline using the MIDAS clock. This is accomplished by the dual register 

approach shown in Figure 15. the first rank of registers is loaded under clock control of the 

input device. When this loading is complete (pixel loaded) and the pipeline is ready to accept 

it, all data values are simultaneously loaded into the second rank registers. The outputs of 

these second rank registers are bussed together. The outputs are selected by feeding the 16- 

phase MIDAS clock to a 4 x 16 RAM, the output of which controls the selection. Since this 

RAM is loaded under computer control, any sequence of 16 registers (data channels) can serve 

as the “pixel” input to the preprocessor. 

2.2.1 HIGH DENSITY TAPE SUBSYSTEM 

The HDT system can accommodate up to eight channels of information. This data is re- 

corded in digital form on separate tracks of a wide-band instrumentation tape recorder in a 

bi -phase code. 

On playback, the outputs from the different channels of the tape recorder are fed to equal- 

izers, one equalizer card for each tape track, to improve the signal-to-noise ratio of the 

P.C.M. signal. From the equalizers, the signals are passed to bit-synchronizers where the 

NRZ digital data and clock information are obtained. This digital information for each track 

is then routed to sync detect-lock circuitry. In the detect portion of this circuit, the data is 

collected into 16-bit words and is integrated for a valid 16-bit sync word. In the sync lock 

section, a lock condition is established after one or more sync words have been located. This 

circuitry also senses when the sync word is missing and defines an “unlock” condition which 

reverts the system back to the sync detect mode. 

In the following sections each of the cards that make up the data handling portion of the 

HDT playback system is described. 

2.2.1.1 Equalizer Card 

There are eight equalizer cards in the HDT system, one for each of the data tracks .of the 

tape recorder. In the playback mode, the system can operate in any one of four tape recorder 

speeds. Each of the cards contain four equalizer-filters which correspond to the different 

tape speeds. When the desired tape speed is established by the computer, the appropriate 

equalizer-filter is switched into the data path. I 

The system is conditioned in one of the four tape speeds from the computer using one of 

the system conditioning commands established through the DRll -C. 

2.2.1.2 Bit-Synchronizer Card-Playback Circuitry a-----..- 
There are eight bit-synchronizer cards, one for each of the tape channels, which contain 

circuitry that is involved in both the record and playback modes. 
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In the playback mode, the bit-synchronizer card accepts a bi-phase signal from the equali- 

zer and produces an NRZ signal and clock information. The card contains in addition to the bit- 
synchronizer module, some additional circuitry which is selected by field effect transistor 

switches as a function of the tape speed select lines. This circuitry optimizes the bit- 
synchronizer for the bit rate which occurs at one of the four selected tape speeds. As above the 

tape speed select lines are controlled from the computer through the DRll-C. The additional 

circuitry consists of filters and a selectable binary countdown circuit. 

The output signals from the bit-synchronizer card (playback) are: data, clock, 2 X quad 

clock. The output signal 2 x quad clock is used in the sync lock-detect card. 

The bit-synchronizer can be conditioned to operate in several different test modes which 

are used as diagnostic checks on the system. One test mode involves the playback circuitry. 

In this test mode the bi-phase input to the card from the tape recorder is removed and is re- 

placed with a signal from a bi-phase generator under computer control. 

2.2.1.3 Sync Detect-Lock Cards 

There are eight of these cards in the system and the entire card is dedicated to the play- 

back mode. 

The sync detect section receives the NRZ and clock information from the bit-synchronizer 

card. This data is serially loaded into a 16-bit register. As each bit is transferred into the 

shift register, the accumulated word is interrogated to see if it has the same bit arrangement 

as the sync word that defines the start of line. This sync word is established by a switch reg- 

ister in the control section. 

There are several features of the detect circuitry that allow the system to accommodate 

data with some adjustment to noise condition. In the section that interrogates the incoming 

data for the sync word, the detection circuitry can be conditioned by the control section to 

allow for zero error or one-bit error in the sync word for a valid detection. The bit-by-bit 

comparison of the incoming data with the defined sync word is accomplished by series of ex- 

clusive “or” gates. The output of these gates is fed to a ROM which encodes the number of 

errors in the comparison, and has as its output a binary word that represents this number. 

The following circuitry when conditioned by the control section recognizes only a zero or one 

bit error in the comparison and establishes the existence of a sync word according to the pre.- 

assigned definition. 

There are several signals from the sync lock section of the. card that are brought into the 

detect circuitry. The function of these signals is covered in the sync lock description. 
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2.2.1.4 Sync Detect-Lock Card: Lock Section 

The lock section of this card performs two functions. From the information obtained 

from the detect section concerning the presence of a sync word in the data, the lock section of 

each channel establishes a lock condition for the particular channel. Once the channel is in a 

lock mode, the circuitry then monitors the occurrence of sync and generates control signals for 

the FIFO card for that channel. If the sync word is missing for a pre-set number of scan lines, 

the circuitry then removes the lock condition and places the channel in an out-of-lock condition. 

The operation of the detect and lock circuitry operates for each channel independently. How- 

ever, the algorithms that define the “lock” and “out-of-lock” modes are the same for all the 

channels and are defined by switch registers. 

The lock condition is obtained ln the following manner. In the lock circuitry a sync window 

is defined (the same for all channels), which is a group of consecutive 8-bit words at the end 

of the scan line and including the next sync word. In the system, the length of the window is 

defined by a switch register in the control section and can be from zero to 32 words. When the 

first sync is detected in the detect section of the card, a pulse is sent to the lock circuitry and 

sets the word clock flip flop. This flip flop enables the bit-clock from the bit-synchronizer to 

the word clock. The output of the word clock is fed to a word counter (10 bits) which keeps a 

count on the 8-bit words in the scan line being generated. When the word counter reaches a 

count equal to the total number of words in the scan line plus the number of words that make 

up the sync window, (this count is established by the individual switch registers located on the 

search lock card) a flip-flop is set which is defined as sync search. The sync search flip-flop 

enables the word clock to the 5-bit sync window counter. If a sync is detected within the-sync 

window a flip-flop is set which defines the lock condition. If, however, no sync has been de- 

tected for the full window timing, the lock circuitry is reset and the channel is back to the out- 

of-lock condition. 

Once the channel is in the lock mode it remains in that condition as long as the sync de- 

tections occur in a pre-set pattern. This pattern is determined by two bits that are defined 

by a switch register. The sync detections within the sync window continue as described for 

lock acquisition. When the channel is in the lock mode and the sync has not been detected this 

fact is stored in a a-bit counter,and it is assumed that the sync occurs at the end of the #video, 

window, i.e., where it would normally be located. If, a sync word is detected within the sync 

window of the next line, then the a-bit counter is reset and the location of that detection within 

the window establishes the start of the proceeding line. However, if consecutive detections 

are missing for a number equal to the a-bit pattern as defined by a switch register, then the 

channel is put in as “out-of-lock” and the sequence of detection, search and lock begins again. 

2.3 THE CLASSIFIER 

The Classifier performs the actual classification of the pixels into categories. The com- 

putation it performs is a maximum-likelihood decision, assuming a multimodal Gaussian 
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multivariate distribution. This assumption has been well justified by many experiments using 

multispectral data at ERIM and at LARS. Although simpler algorithms can perform well for 

some data sets, a significant percentage of applications demand this powerful decision rule. 

No penalty in speed and only a small additional cost occurs in using this algorithm. A digital 

implementation of the algorithms was chosen over a hybrid or analog implementation because 

the digital implementation 

(1) costs somewhat less to fabricate, 

(2) allows more exact repeatability in setup and performance, 

(3) provides computer-controlled diagnostics more easily, 

(4) uses the most current state-of-the-art digital techniques:,, 

(5) produces a throughput equal to that produced by current hybrid/analog techniques. 

The basic calculation to be performed is 

where X is the input data vector (the vector of bytes in a pixel). The probability density func- 

tion is Gaussian: 

(X - Mi)T Si’(X - Mi) + PnlBil + n Ln 

where vector Mi is the expected value of the X vector in category i, 0, is the variance-covari- 

ante matrix for category i, and n, called the number of channels, is the- dimension of X, M, 

and 8. Define m as the number of categories into which the data can be classified, so that i 

ranges from 1 to m. Then formula (1) is calculated m times for each pixel, once for each of 

the m categories. The smaller the result of the ith calculation, the higher the probability that 

the pixel belongs to the ith category. 

Formula (1) consists of three additive terms. The most difficult calculation in the equation 

is the quadratic term 

Qi = (X-Mi)T S;‘(X-Mi) (2) 

The term Pi = enlQ,l, a constant for each of the m categories, is calculated prior to the classi- 

fication process. 

The choices of the number of categories, m, and the number of channels, n, are limited 

because the number of computational steps increases (1) in proportion to m, and (2) as the 

square of n. Two sets of choices are possible: 

(1) m = 8 and n = 8, or 

(2) m = 16 and n = 4 

Note that before any processing can occur, the computer must load statistics (including 

M and 0-l) about the data set and categories into RAM’s in the Classifier. Once these have 
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been loaded, the Classifier accepts each pixel, calculates Q, performs a normalization step, 

then makes its final decision, as illustrated by Figure 16. 

The design of the Q-calculating, or “Quadratic,” portion of the Classifier outlined in Fig- 

ure 16 follows directly from mathematical manipulation of Equation (2). The equation can be 

expressed in a number of ways to optimize the computation. Since the number of bits in the 

Classifier is limited, it is desirable to express the quadratic calculation such that the calcu- 

lated result has a very limited range. The variance-covariance matrix 8 can be expressed as 

[Ql = bl [PI bl (3) 

where [o] is a diagonal matrix of the standard deviation, and lp] is the correlation matrix with 

all l’s on the diagonal and values of 0 to 1 off the diagonal (in some cases negative values may 

occur). Taking the inverse of Equation (3) yields 

[5+ = [i] lo]-l[;] 
Substitution of Equation (4) into (2) results in 

The terms (X-M)/0 can have a very wide range. However, if the range 

-8 5 (X-Mi)/ai 5 8 

(4) 

is exceeded, the value of X for that channel is too many standard deviations from the mean to 

be considered for classification. In this case, truncation of significant bits will occur, causing 

a flag to be set in the Classifier indicating this condition. This indication is used later to re- 

ject a decision that the sample is from the particular class. 

The computation of Equation (5) could proceed in a straightforward manner, but can be 

simplified somewhat due to the symmetry of the correlation matrix and its inverse. This 

simplification can be accomplished in more than one way. One method is as follows: 

(7) 

where B is an upper triangular matrix formed by the decomposition of the inverse p matrix. 

By calculating 

lIy:yil = llBil 
X-Mi [ 1 u. 

1 
(8) 

the final matrix operation is simply 
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Q = [YiITIYi] = f: Y~i 

j=l 
(9) 

where the yji are the elements of the [Yi] vector. 

There are four steps implied by Equations (7-9). These are 

(1) subtract the mean from each channel 

(2) multiply each result by l/a 

(3) perform the Y matrix multiplication on each result of Step (2) to get Y’s 

(4) square each resulting Y and add the results together 

Another method for calculating Equation (5) is to express the inverse of the correlation 

matrix p 
-1 . in terms of its eigenvalues and eigenvectors. The correlation matrix can be ex- 

pressed as 

p =unuT (10) 

where the U matrix is comprised of eigenvectors arranged in columns, and U 
T is its trans- 

pose. The A matrix is the set of eigenvalues on the diagonal. Taking the inverse of the cor- 

relation matrix, it can be shown that 

-1 
P = UA’$JT (11) 

which is to simply take the reciprocals of the eigenvalues and multiply by the two original 

eigenvector matrices. One further decomposition brings us to the desired form 

P 
-1 = [u*-m] p-l/qJT] 

where A -l/2 -1 l/2 means (A ) . 

Substitution of Equation (12) into Equation (5) yields 

In this case, if a vector Yis defined as 

y 
i 

= n - 1/2uT X-“i 
i r I 1 u. 

1 

(12) 

(13) 

(14) 
L- -J 

and computed as such, then the final matrix operation can be performed in the same manner 

as in Equation (9). The hardware required for this second calculation must perform more 

multiplication than in the first method. However, in order to implement the first method ef- 

ficiently, a more elaborate switching scheme is needed to avoid multiplying by a large number 

of zeros. The details of this switching scheme were not worked out and only general consider- 

ation was given to it. Since it appeared desirable to have the flexibility and capability to do 
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the matr.ix multiplication required by either Equation (9) or (14), the hardware was designed 

to do full matrix multiplication. Tests were run on over 100 signatures to see if the resultant 

set of coefficients for either method appeared better suited to a limited-word-length multi- 

plier. From these results it appeared that a slight advantage might be gained by using the 

second method. 

The Quadratic Pipe portion of Figure 16 outlines the physical realization of the calcula- 

tion of Q. Note how closely it follows the four steps listed above. Precision throughout this 

portion of the pipeline varies from 8 to 14 bits, with the significance increasing as the data 

progresses from beginning to end. Q itself is a U-bit number. 

Following the calculation of Q, the la-bit value is multiplied by a set of lo-bit values 

called Kf, normalizing constants which are pre-determined parameters obtained from nor- 

malizing the inverse variance-covariance matrix, 0 -1 . 

The final decision stage of the process completes the calculation of Equation (1) by adding 

in the logarithm of the determinant, then decides to which, if any, of the categories the pixel 

belongs. This decision is made by (1) comparing the values “‘, fn{pr(X)] resulting from the 

repeated calculations of Equation (1) with different M and 0 values, (2) choosing the cate- 

gory corresponding to the smallest calculated value, if it is small enough, and (3) outputting 

its 5-bit code. If none of the values is small enough, a reserved code meaning “none of these” 

is produced. 

2.3.1 SCALING OF THE CLASSIFIER 

The calculation of the quadratic form given in Equation (2) above can result in a very 

large number. Fortunately, we are not interested in the exact result for large values and, 

therefore, can restrict the range, provided that an overflow condition is detected. The scaling 

of the quadratic pipe is summarized in Figure 17. All arithmetic operations up to the input of 

the squaring circuit are 2’s complement arithmetic. The input data is a g-bit word having 

the range of values 

-256 5 x s 255 

or 

0 5 x 511 

We are interested in small values of X + (-p), but an overflow condition can be detected after 

adding -1 which allows us to keep the result to eight bits. Following addition, a multiplication 

by l/u is performed. A restriction on the range 

is placed on the output of this multiplication. This in effect limits any data channel value to 

less than eight standard deviations from the mean. It is to be noted here that a lower limit on 
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u is required and consequently an upper limit on l/u also. The limit selected is 

u 2 1 + (l/2048) 

or 

l/u 5 1 - (l/2048) 

which appears to be a reasonable choice based upon examining a number of signatures. Also, 

it would seem reasonable that variation in the data for a given object class would show changes 

in the two least significant bits. 

The above two restrictions determine which high-order bits can be tested for overflow 

and discarded at the output of the l/u multiplication. The five bits from 23 to 27 are tested 

for. an overflow condition. If an overflow is detected, an overflow bit is put into and clocked 

down a shift register, which is parallel to the pipe, in step with that data value, so that at the 

final test for recognition that calculation is discarded. 

The input to the eight matrix multiplier cards is comprised of the sign bit and the seven 

bits from 22 to 2 -4 from the variance card. It is to be noted that this quantity (X-CL)/U has 

zero mean and variance of one when the input data (X) originates from the same distribution 

as that used to calculate cr and u. Similarly, after the matrix multiplication is performed in 

the eight matrix multipliers, the y outputs have zero mean and a variance l/k where the con- 

stant k is the largest value in the A -1’2UT matrix. This normalization of the matrix is done 

in order to get maximum utilization of the 8-bit RAMS and their associated multiplier input. 

Empirical study of more than 100 signatures indicates that the value of k is from a little over 

1 to about 5. If the value of k were not factored out then the variance of the y output would be 

1, and a test of 

-8 'y 5 +8 

could be used. In Phase 1 the overflow test was -8k 5 y 5 +8k which was found to be too large 

a bound. Therefore a shifter was introduced into the pipeline, as shown in Figure 1’7, which 

has the effect of making the overflow test 

-8k’ 5 y 5 8k’ 

where 

and 

k’ = k2-” 

using the proper integer for n. The output of the matrix multiplier is tested on the appropriate 

bits for overflow. 

The constant k which was factored out in the matrix multiplication is reintroduced in a 

final multiplication stage. Since there is a different k with each object class, the set of k’s 
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can be normalized with largest k factored out. This again makes maximum use of the limited- 

bit multiplier and RAM. 

2.3.2 PIPELINE ORGANIZATION OF THE CLASSIFIER 

The pipeline can be organized in many ways. Since the fundamental calculation is the 

quadratic calculation for n categories of materials, there could be n pipes each performing the 

quadratic calculation in parallel, or there could be just one pipe performing the calculation 

sequentially. Speed of calculation and available integrated circuit hardware dictated the organ- 

ization. It was desired to perform the quadratic calculation in 5 microseconds. The TTL inte- 

grated circuits perform arithmetic operations in 200 nanoseconds or less; therefore about 25 

arithmetic operations could be performed in 5 &sec. Since almost every arithmetic operation 

requires a coefficient stored in a memory, 4-bit x 16-word random access memories (RAMS) 

were chosen as the fundamental storage element. Thus 16 arithmetic operations are performed 

in 5 I.csec. For example, a mean value is subtracted from data entering the pipe. There are 

sixteen mean values stored in this operation. They could all be for one object class,or they 

could be two object classes of eight means each,or they could be four object classes of four 

means each. The last two were implemented. In the first case, the data vector must be en- 

tered twice and the whole pipeline computes the quadratic for two object classes sequentially. 

Eight object classes are computed with the four pipes. For the second case, where the data 

vector is comprised of four data values, the vector is entered four times and each pipe com- 

putes four quadratic values for four object classes thereby giving a total of sixteen classes 

being computed in the classifier every 5 bsec. 

2.4 THE PREPROCESSOR 

The MIDAS preprocessor design provides for scan angle correction of data in both additive 

and multiplicative modes, for taking generalized linear combinations of (angle corrected) data, 

and for obtaining ratios of selected pairs of such combinations. Preprocessor outputs will 

feed the MIDAS Classifier directly,and provisions are available to accept inputs in a variety of 

formats. The Preprocessor will accept up to 16 input channels,and will supply either 4 or 8 

outputs to MIDAS. Figure 18, a block diagram of the Preprocessor, summarizes the operation. 

Data into the preprocessor may be in either of the following formats: 

(1) 10 or less bits of 2’s complement 

(2) 9 or less bits of (positive) magnitude 

Other formats (negative magnitude, BCD, etc.) would require the addition of translators. 

Input data is defined as being in the range -4 to +3 12’7/128 units for the first case or 0 to 

+3 127/128 for the second case. These data formats and the entire Preprocessor scaling are 

shown in Figure 19. 
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Data input maximum rate is one pixel (vector) per 5 psec. Each pixel may be described 

by a vector of up to 16 channels, with maximum channel rate equal to 1 channel/300 nsec. For 

less than 16 channels/pixel, channels should be repeated so as to provide 16 total inputs per 

5 I.csec, before changing to a new pixel. All Preprocessor timing is under the control of, and 

synchronous with, the MIDAS clock and input rates will therefore be a function of the selected 

clock rate. 

2.4.1 ANGLE CORRECTION 

Scan angle errors are inherent in the method of collecting multispectral data using an 

electromechanical scanner. Figure 20 shows a scanner collecting data from one “scan line.” 

The scanner senses points, starting at angle 9 ‘= -$ m, sweeping to the right, and ending at 

angle $ = +C,. In a set of scanned data, consistent errors may occur as a function of the 

angle $J. Some reasons for these errors follow. 

(1) The scanner aims directly perpendicular to the ground when $ = 0, but at a different 

angle when $ is near f C m. Thus, sensed values may differ between the middle and 

the end of the scan line. 

(2) A longer distance must be traversed between the scanner and point A than between 

the scanner and point B (see Figure 20). A longer path through more dust particles 

and haze in the air will cause different results to be recorded than will a shorter path. 

(3) The sun to the right or the left of the scanner will cause an uneven reflection pattern. 

(4) Constant malfunctions or idiosyncrasies of the scanner as a function of $I are possible. 

The Preprocessor can correct known scan angle errors in two ways. 

Additive Correction. The Preprocessor can add to the pixels in every scan line a con- 

stant, pre-stored function 

A&J) = A0,A1>A2, . . . Ak-1 

where k is the number of additive corrections per scan line, and each A is a 16-component 

vector. If, for example, the result of scanning a uniform area produces a scan line of data 

like the solid line in Figure 21, the Preprocessor can add back to every scan line the values 

sketched by the dashed curve. 

Output of the add function must be in the range -4 to +3 12’7/128. An overflow test is per- 

formed to check the add output,and an overflow bit is generated which moves in step with the 

data value through the Preprocessor to the Classifier where it eventually enters into the de- 

cision process. 

Multiplicative Correction. The Preprocessor can multiply the pixels in every scan line 

by a constant, pre-stored function 

B(C) = B0,B1,B2, - - - Bk-1 

43 



0 Sun 

A B 

FIGURE 20. REMOTE SENSING SCANNER 

44 



Corrected Scan Line Sum of Curves Below 
. . . . . . . . ..+....... 

Scan Line from 
Uniform Area 
with Error 

----- 

/’ 
A (a,) Value 
to Add Back I\ 

v 

FIGURE 21. ADDITIVE SCAN ANGLE CORRECTION 

45 



where k is the number of multiplicative corrections per scan line, and each B is a 16-component 

vector. As Figure 18 shows, both an additive and a multiplicative correction can be made to 

each pixel so that the corrected X, called ??, is 

x = (X+A) * B 

Before the classification process, the A and B arrays are stored in internal RAMS, though not 

in the form Ao, Al, A2, . . . Ak-I. Instead, the RAMS contain Ao, AAI, AA2, . . . AAk, so that 

A(#=j)=A +AA 0 1 +AA 2 +... + AA., where j can be any number up to 1024. Note that these 
J 

stored values can be chosen so that they will also scale the input channels at the multiplier 

output. 

The angle correction described thus far may be termed a “one dimensional” correction. 

If the values stored in the RAMS can be updated between scan lines then the correction may be 

termed a ‘Itwo dimensional” correction. This is possible if the input data is coming from the 

Unibus. However it is not possible when the data is coming from HDT or analog tape. 

Data from spaceborne scanners such as LANDSAT require that preprocessing functions 

be updated periodically, but not necessarily for every scan line. The method of providing two- 

dimensional angle correction in the Preprocessor is to have two sets of RAMS containing the 

correction functions. One set is the active set providing the current correction functions 

while the second set is being updated from the Unibus. 

2.4.2 LINEAR TRANSFORM 

The next stage of the Preprocessor, shown in Figure 18, performs the linear combinations 

of channels . Input signals, having been corrected for systematic errors by A(G) and B($J), are 

applied simultaneously to sixteen linear combination modules. The outputs of these cards are 

wired into two groups of eight each. One group is termed the numerator and the other the 

denominator for subsequent ratio processing. Each LC card performs the function $zo Aixi 

where xi are incoming data and Ai are coefficients with range -2 to +l 15/16. Overflow tests 

are performed on individual products for the range -4 to +3 8191/8192 and on the sum of prod- 

ucts, whose maximum range is -4 to +3 511/512. It is evident, therefore, that magnitudes of 

coefficients must be related to the number of non-zero coefficients; i.e., fo_r a sum of all 16 

inputs, the maximum coefficient guaranteeing no output overflow is l/16. There are 256 values 

of Airs to be stored, initially, in RAMS. Suitable coefficients can be stored such that 

(1) the xi’s are unchanged 

(2) the xi’s are in a rearranged order 

(3) the xi’s are individually scaled 

(4) there is a linear combination of any or all of the xi’s 

(5) any combination of the above 
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2.4.3 RATIO OPERATOR 
The ratio calculation stage performs eight divisions, then repeats these same eight divi- 

sions again, providing the results sequentially to the Classifier. For each division, the stage 

(1) chooses any one of the eight numerators provided by the previous stage 

(2) chooses any one of the eight denominators provided by the previous stage or a constant 

from the denominator RAM 

(3) begins a pipelined divide operation 

(4) supplies the results, five time-steps later, to the Classifier 

The sequential choices of the numerator and denominator are pre-specified by the user in the 

form of a code stored in another RAM. 

The linear combination and ratio calculation stages enable powerful, flexible system use. 

Among their applications are 

(1) simulation of proposed scanners 

(2) selective scaling of channels 

(3) reduction of dimensionality from 16 channels to eight 

2.5 MIDAS PIPELINE HARDWARE DESCRIPTION 

2.5. I ‘THE CLASSIFIER 

The classifier section of the MIDAS System consists of four bays, each containing 13 wire- 

wrap cards. These bays are nearly identical in that each has the circuitry for one quadratic 

pipe computation as described in Section 2.1. This computation requires twelve cards: (1) a 

mean card, (2) a variance card, (3) eight matrix multiplier cards, (4) a squaring card, and 

(5) a square accumulate card. These card types are described in following subsections. In 

addition, each bay contains one of the following one-of-a-kind wire wrap cards: k2 card, rec- 

ognition card, diagnostic/output card, and clock card; these wire-wrap cards are also described 

in succeeding text. 

The wire-wrap hardware employs Augat 8136-URGlTG universal circuit boards and 8170- 

RGl card racks and back planes. The cards can hold up to fifty Is-pin integrated circuits 

(ICs) or eighteen 24-pin ICs or a mix of both. 

Mean Card 

The mean card was updated from the one used in Phase I of the MIDAS program. It was 

expanded from 8-bit capability to la-bit capability to handle the output of the preprocessor 

divide card. This also permits the inputting of 8-bit magnitude numbers. The prime purpose 

of this card is to sequentially add the stored -$ to the data vector component using 2’s com- 

plement arithmetic. An overflow test is defined by overflow = 7 * 5 + 5.9 where 7 and 9 are 

the adder output at those bit positions. This overflow test assumes that after the mean is sub- 

tracted from a data vector the output magnitudes must be smaller than the input magnitudes if 

47 



II 

there is any chance that the data vector came from the distribution associated with that vector. 

The X inputs ‘are quotients from the ratio section of the Preprocessor. The output of the adder is 

loaded into latches 74174 as processor outputs and into 8TIOs for diagnostic outputs. A block 

diagram of this card is shown in Figure 22. 

There are two selection devices on the mean card, one to select a RAM in that bay for 

writing into that RAM and the other to select a diagnostic bus output to the diagnostic card. 

In the RAM selection, a RAM write select comes from the clock card which does a bay select 

decode to enable the decoder on the mean card; this also sends four bits to the decoder on the 

mean card. A read pulse is then applied which can propagate through only one decoder input 

on one mean card to a RAM on one other card in that bay. In the diagnostic bus output selec- 

tion an identical procedure is followed except that the origin of the signals is on the diagnostic 

output card. 

Variance Card 

The prime purpose of this card is to multiply an 8-bit number by a la-bit number and put 

out an 8-bit result with overflow. There are no latches in the processing stream on this card, 

but the diagnostic bus has a g-bit 8TlO latch. The input, X-p, is represented by 

XXXXXXXX. (2’s complement number) 

The coefficient l/a is represented by 

x .xxxxxxxxxxx (2’s complement number) 

Since l/o is never negative, the sign bit is always zero. The eight output bits of the 20-bit 

product are selected from 

X - -- - -XXX.X~X- - - - - -- 
11 I1 76 0 
98 43 

The overflow test simply consists of testing bits 14 through 19 to see whether they are all at 

the same level. If so, there is no overflow and the overflow output is high. A block diagram 

of this card is shown in Figure 23. 

Matrix Multiplier Card 

This card has two main functions: (1) to multiply [(X-LL)/U]~ by a coefficient, and (2) to 

accumulate several products of this multiplication. The [(X-p)/ali input from the variance 

card is stored in a latch on this card. The accumulator is cleared at the start of the matrix 

multiplication for each signature computation. Each Is-bit product of the multiplication is 

truncated to the high-order 14 bits and latched before being applied as one input to the accumu- 

lator. The accumulator consists of a 16 -bit adder with a feedback latch providing the second 

input. The two expansion bits in this accumulator are adequate for eight adds since the largest 

product is 212(the result of (-27) X (-27) after truncation). Added eight times, this number 

yields 2 
15 

, which is the largest negative la-bit number. Since the two operands were negative, 
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the accumulated products should be positive. Hence, for this special case the overflow has 

caused an error in sign only. However, #is number is to be squared in the next step, thus 

correcting the only possible error. There are processor data-stream output-latches (8TlOs 

with 16 bits) and diagnostic bus latches (8TlOs, also with 12 bits). These latches are enabled 

at the proper time by the MTXMPX signal from the square-accumulator card and loaded by 

CO, the fundamental clock frequency. A block diagram of this card is shown in Figure 24. 

Square Card 

The first operation preparatory,to squaring the matrix multiplier output, is to perform the 

shift as described in section 2.3.1. Next the overflow test is applied to the four to six most 

significant bits (depending on the shift used), and the square input is reduced to the next 10 most 

significant bits, not included in the overflow. A 10 X 10 bit square operation is then performed on 

the card. A block diagram of this card is shown in Figure 25. 

Square Accumulator Card 

This card’s main function is to accumulate the squares from the square card. It has both 

input and output latches as well as feedback latches. It has a 13-bit input (the 2 MSB’s and the 

low-order seven bits from the 10 x 10 square are not brought in). The adder is 16 bits and three 

expansion bits are provided for eight adds. The twelve most significant bits are brought out via 

8TlOs on both the processor data path and diagnostic path. The diagnostic bus is multiplexed from 

the diagnostic/output card, whereas the processor bus is multiplexed from the k2 card. The 

square-accumulator card also has a number of control functions. It 

(1) acts as a buffer for the clocks (bay buffer) 

(2) multiplexes the matrix multipliers (enables 8TlOs on the two output busses which are 

then loaded at the next CO clock) 

(3) controls the matrix multipliers’ output bus to the 10 X 10 square card using a 3 -line to 

8 -line decoder 

(4) clears the matrix multipliers’ accumulators 

(5) clears its own accumulator 

(6) multiplexes its own output 8TlOs to the processor and diagnostic busses 

(7) contains an overflow shift register. Overflows from the mean, variance, and 10 x IO 

square cards are loaded into the shift register and then dropped into the overflow out- 

put register (8TlOs) at the proper time 

A block diagram of this card is shown in Figure 26. 

k2 Card 

The main function of this card is to perform lo-bit by la-bit multiply. The la-bit data 

comes from the square accumulators and the lo-bit data is the k2 normalizing constant. Its 

input is buffered and there are no input latches since the outputs of the square-accumulator 

cards are latched and are bussed into it. There is a 7-4174 output latch register. 
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Another function is to control the square accumulators’ bus, which it feeds using a a-line 

to 4-line decoder. The signal that multiplexes the output bus also multiplexes the overflow 

bus to the recognition card. A block diagram of this card is shown in Figure 27. 

Recognition Card 

The main function of this card is to determine which calculated material’s exponent is the 

minimum. It also performs the Chi2 test on the sum of the squares. At clock times 5 and 13 

a new set of sum of squares from the k2 card becomes available. A 14-bit add is performed 

with the Ln IDI input truncated to bits 0 through 11, while the sum of squares is a 14-bit number 

in bits 0 through 13. 

The selection time of the overflow into the recognition logic is the same as the selection 

time of the square accumulation output; therefore the overflow shift register output must have 

two stages of latches to make up for the delay in the k2 multiply and in the Pn :Dl add on the 

recognition card. Similarly, the output of the Chi2 test must be latched to account for the en IDI 

add delay. 

A new sequence of testing begins at clock time 8 for the 8-channel set-up or at clock time 

14 for the 4-channel set-up. At these times the previous recognition result is transferred to 

the output latches. There are two internal holding latches, one for exponent and one for ma- 

terial number. After loading these two quantities into the output latches, the internal ones are 

cleared. There is an artificial seventeenth bit set at this time which makes the stored expo- 

nent look as if it is larger than anyl6-bit computed exponent. Thus,the first test will always 

succeed and the exponent will be stored if no overflow has occurred. When this condition is 

met the artificial bit is reset. The material code is a 5-bit number. It is MSB OXXXX 

where the X’s give the material number (0 through 15); code 16 indicates no material selected. 

A block diagram of this card is shown in Figure 28. 

Classifier Timing Card 

The Classifier consists of the four “pipeline” computers in parallel whose outputs finally 

converge on the circuits to scale the exponents of the density function and intercompare these 

exponents for a decision. The sequence of operations can be visualized as shown in Figure 29 

where data is shown entering the A-D converters at t = -16 in the upper left corner of the dia- 

gram. A sample, consisting .of a vector of eight elements of eight bits each is passed through 

the computational circuits indicated and emerges at the bottom right of the diagram as a classi- 

fication code of five bits. The general appearance and function of the arithmetic operations so 

diagrammed is that of a “cascade” in which the breadth of the cascade in time is proportional 

to the computational load of a particular circuit. 

Each “pipe” or “cascade” processes the computation of the quadratic form for the expo- 

nent of the Gaussian distribution for two distributions. There are, then, a sequence of alter- 

nating computations of the first exponent in cascade 1, the second exponent in cascade 1, the 
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third exponent in cascade 2, etc. In the present machine, there are four such cascades oper- 

ating in parallel, allowing the computation of eight exponents at once. 

The timing diagram (Figure 29) shows the flow of two exponent computations and the re- 

sulting decision, neglecting the fact, for the sake of simplicity, that the cascade would normally 

contain portions of other computations for the preceding and subsequent samples. Data is en- 

tered into the A-D converters and is available for computation at the end of 16 machine cycles, 

or approximately 5 j.&ec. Data latched in the converter outputs is then, supplied sequentially 

(Xl’ 3’ * l * X8) via a multiplexer and subtracter to a latch, and one clock cycle per element 

is allowed for this operation. At t = 0, 1-(1 is subtracted from X1; at t = 1, p 
* 2 

is subtracted 

from X2, etc. Also, at t = 1, (X1 - ~1) is multiplied by (l/u i) yielding Xl. At t = 2, X* is 
5 

supplied to each of eight multiplier-summers which compute the products (XT. Pll), (Xl*Pzl), 

. . . (XI’P81) and enter these into the summers. At t = 3, the multiplier-summers compute 

(x;‘p12); (x;~p22) . - . (Xl * P82) and add these products to the previous results. Thus at 

t = 10 the summers contain the complete sums of products for all matrix operations. Each of 

the eight multiplier-summers may, as a result, be considered as a row operator since it ac- 

complishes the sequence of multiplications and summations for a particular row. 

As the result of the above transform, all the elements of this vector are uncorrelated; 

therefore it needs only to have its elements squared and summed to obtain the normalized 

quadratic form for the exponent. This is accomplished during cycles t = 10 to t = 18, allowing 

one cycle for each squaring operation and a final cycle for storage of the summation. 

At this point, the exponent must be re-scaled and the natural logarithm of the determinant 

of the covariance matrix added to obtain the final exponent of the density function. This requires 

two cycles. The comparison of these exponents, now becoming available from the normaliza- 

tion circuitry, begins as each exponent appears. The procedure is to examine all exponents 

sequentially to choose the smallest, assuming that one is less than a threshold test value which 

is entered first, and to retain at all times the lesser value of two sequentially examined ex- 

ponents. The number of the exponent retained specifies the class of the input vector. This is 

available to be displayed, printed on film, or supplied to the computer for logging or subsequent 

processing. 

The cascades may also be used to process an increased number of distributions for a 

lesser number of channels. Thus for a 4-channel source of such as LANDSAT, the operations 

of the various arithmetic units may be time-shared to provide 16 instead of eight class de- 

cisions for eight channels. 

Clock Card 

This card has two main purposes, to generate timing pulses to control the 16 steps in the 

processing of a data vector, and to control the loading of the RAMS during system setup. A 

block diagram is shown in Figure 30. 
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The timing pulses, or clock pulses, are derived from a master oscillator. A countdown 

is program-selectable in six steps providing clock pulse CO at rates from 3.2 MHz to 100 kHz. 

Other clock signals are labeled Cl to C4 and a to c4. 

The signals Cl to C4 are used for classifier control, whereas CO is used for laading 

latches at the end of a clock period. The circuitry can operate in a burst mode with or without 

reset to zero. The burst mode is used when operating the system using data coming from the 

computer. The.clock can be set to count up from zero to 127. Sixteen steps are required to 

process a data vector. These are provided by setting the clock counter at 15, thereby allowing 

the sixteen steps 0 through 15. The clock is started by the computer when the computer has 

loaded the data vector into the second rank of the data register (latch “B” .on the hybrid cards). 

TheClassifier processes this vector and stops until the computer has loaded a new data vector. 

If the computer loads a new vector first, however, the logic waits for the clock to finish before 

a new start signal is accepted by the clock. 

Control of RAM loading during system setup is accomplished by means of logic on the 

clock card. Timing pulses and routing control are provided (see Figure 30) which transmit 

the contents to any selected RAM by replacing the clock pulses Cl through C4 with the low- 

order four bits of the address word. The addressing and loading of RAM constants is accom- 

plished by the following sequence: 

(1) SEND WORD 1, DATA READY AND END CYCLE 

(2) UPON RECEIPT OF CYCLE REQ. SEND WORD 2 

(3) UPON RECEIPT OF CYCLE REQ. SEND NEW WORD 1 

(4) REPEAT 2 

The process stops when the word count register in the DR-11B increments to zero 

The two-word transfers of RAM coefficients are 

WORD 1 CODE BAY RAM ADD 
0000 0 DDD 

- - 
DDDD DDDD 

MSB MSB MSB 

WORD 2 CODE RAM CONSTANT 
0001 DDDDDDDDDDDD 

MSB 

Note that D is DATA -0 or 1, as the case may be; BAY is binary-coded 0 to 7 (only O-3 are 

used); and RAM is binary-coded: 

0 = MEANS 

1 = VARIANCE 

2=MTXO 

3=MTXl 

4=MTX2 

5=MTX3 
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6=MTX4 

7=MTX5 

8=MTX6 

9=MTX7 

lO=k2orCHI (k2 in Bay 2; 

11 = LN (Bay 3 only) 

12 = SHIFTER 

ADD is binary-coded O-15 for internal address 

CHI in Bay 3) 

of a RAM. 

Diagnostic/Output Card 

The diagnostic/output (D/O) card is the prime output port for classifier-generated signals. 

Inputs to the D/O may originate on the recognition card (5-bit material code and/or @-bit ex- 

ponent value) or at any access to the classifier diagnostic bus. Outputs from the D/O card are 

presented as a Is-bit word to the computer interface and as an 8-bit word to a display interface. 

The D/O card has two input registers for holding the values of material and exponent from 

the recognition card and one register for holding the diagnostic value (see Figure 31). Con- 

tents of these three registers are combined and switched to the two output ports under control 

of the classifier clock and a computer-selected command word. 

The command word establishes the desired output formats and selects a time and place 

for sampling the diagnostic line. The command word is stored in a register and will command 

the same outputs to repeat twice each classifier cycle until a new command is sent. 

Available output formats are as follows. 

(1) At the computer interface: 

(a) the full 16-bit exponent value 

or (b) eleven most significant, exponent bits plus a 5-bit material code 

or (c) 12-bit diagnostic plus 4 zeros 

or (d) a composite word, presented once each cycle, consisting of two 5-bit material 

codes 

(2) At the display interface: 

(e) the eight MSBs of the exponent 

or (f) the eight MSBs of the diagnostic 

or (g) 5-bit material code 

Any combination of the above computer and display outputs may be selected by the appro- 

priate command except that (d) and (e) are not available simultaneously. The outputs are spe- 

cified by the codes in Table 6. 

2.5.2 THE PREPROCESSOR 

The Preprocessor section of the MIDAS pipeline consists of four bays of wire-wrap cards. 

A diagram of the chassis layout and position of the various cards is shown in Figure 32. There 
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TABLE -6. CODE SELECTION FOR THE DIAGNOSTIC/OUTPUT CARD 

CODE 

10001 

01001 

10101 

01101 

11101 

10011 

01011 

11011 

10111 

01111 

11111 

TO COMP 

000 MAT @ 000 MAT 

000 MAT @ 000 MAT 

11-BIT EXP @ MAT 

11-BIT EXP @ MAT 

11-BIT EXP @ MAT 
DIAG 0000 

DIAG 0000 

DIAG 0000 

EXP 

EXP 

EXP 

TO DISPLAY 

000 MAT 

DIAG @ 

000 MAT 

DIAG @ 

EXP @ 

000 MAT 

DIAG @ 

EXP @ 

000 MAT 

DIAG @ 

EXP @ 

NOTES: 0 8 most significant bits of 12 

0 11 most significant bits of 16 

0 8 most significant bits of 16 

@ This output appears every second process 
cycle; all other outputs appear every cycle. 
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are a total of 52 wire-wrap-card positions that make up the Preprocessor chassis. However, 

not all of them are filled. Figure 32 shows 16 positions for “Delta RAM” cards designated AR. 

Only four of these cards have been constructed. The significance of this will be discussed 

later. Of the 52 card positions there are 12 different card designs. These are: (1) Delta 

RAM (AR), (2) Delta RAM control (ARC), (3) Increment (INCR), (4) ADD, (5) Multiply (MULT), 

(6) Delta RAM Load (ARL), (7) Linear Combination (LC), (8) Linear Combination Control (ICC), 

(9) Command (COM), (10) Prenormalization (PRE), (11) Divide (DIV), and (12) Postnormaliza- 

tion (POST). These card types are discussed in the following subsections. 

Delta RAM Card 

The Delta RAM card is basically a 4-bit by 256-word RAM repeated eight times on each 

card. Since the angle correction function is generated by increments at equally spaced.pixels 

or point numbers, the angle correction function in the one-dimensional case can be thought of 

as a staircase type function across the scan line or “stripes” down the flight path. One card 

then can provide 256 increments or stripes for correcting eight data channels. Furthermore, 

the 4-bit word provides the a-bit increment for both A and B functions. It takes two cards to 

provide the increment values for all 16 channels. There is provision in the Preprocessor 

chassis for 16 Delta RAM cards: up to eight cards to provide the active increment values, 

and up to 8 cards that are available to have updated values read into them. The updated cards 

can then be switched to the active state, thereby making the other eight cards available for up- 

dating. The two sets of cards are termed x and y sets respectively,and either can be used in 

the one-dimensional case. Not all eight cards need be used for this incremental update scheme. 

If eight or fewer data channels are used for input to the preprocessor only four cards are 

needed per set since one card contains eight RAMS; since each card contains 256 increments 

the maximum number of increments is 1024. If fewer than 1024 increments are needed then 

the number of cards may be less. . For example, if eight or fewer channels and 512 increments 

are used, then only two cards per set are needed. The system as presently constructed has 

four Delta RAM cards. The integrated circuits used are 74S206 l-bit X 256-words with three- 

state outputs. The outputs of all x cards and all y cards are bussed together to feed the update 

value to the increment card. There are no diagnostic outputs on these cards. 

Delta RAM Control Card 

The Delta RAM control card has two major functions. The first function is to store the 

initial values A0 and B. for both the active and updated function. One set of RAMS provides 

the initial value to the increment card when an end of line is received, thereby conditioning 

the angle correction function to be ready at the start of the next line. A selector switch pro- 

vides the proper output of the ARAMs designated as active. The second major function is to 

select the proper ARAM card to put the correct increment value on the output bus. Since there 

are eight RAMS per card and up to 16 cards, selection circuitry for one of 128 is provided for. 

The circuitry disables the select for the RAMsbeing updated, and steers the decoded address 

to the 64 active RAMS. 
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Increment Card 

Basically,,the increment card performs the addition of the current value of the function 

to the increment and stores this updated value as the current function. Because of the pipe- 

line nature of the MIDAS system where it takes 16 clock pulses to enter a pixel, 16 values of 

the current function must be stored. This is done in two la-bit by 16-word RAMS. The output 

of one of the RAMS is selected through a switch as the current value of the angle correction 

function. This output is also fed to a switch, the use of which will be explained shortly, that 

normally passes the current value of the function on to the input of an adder. The other input 

to the adder is the increment value originating from the Delta RAM cards. Since the increment 

value consists of two bits, it can take on a value -2, -1, 0, +l. When the command to update 

is given (not necessarily every pixel) the output of the current value is added to the increment 

value,and the result stored in the other RAM on a 16-channel basis. Repeated values will occur 

if there are fewer than 16 ChaMdS of incoming data. When this RAM is loaded it becomes the 

angle correction value for the next pixel. The switch at the input to adder has the current 

value RAM as one input and the initial value as the other. At the end of the scan line this 

switch feeds the initial value to the adder, the other adder input being zero. The initial value 

drops through the adder and is loaded into the RAM. After this operation is completed (about 

10 ,usec) the angle correction circuitry is primed for another scan line. This card has two 

identical sets of the circuitry described above, one to provide the additive angle correction 

value A($), the other to provide the multiplicative angle correction value B(9). 

Add Card 

The add card performs the addition of the input data with the current value of the angle 

correction function A($) which is provided by the increment card. This card has two other 

functions: First, the diagnostic bus terminates on this card. A 74174 latch stores the value 

on the diagnostic bus and feeds it to the computer. There are three diagnostic input ports on 

this card: (1) the input data, (2) the angle correction value A(#), and (3) the output of the adder. 

Second, the overflow bits are brought in and put into a shift register at the appropriate place. 

Thus, when a data value appears at the output of the preprocessor, the output bit of the shift 

register indicates if this is valid data. Both the data values and the overflew bits are fed to 

the classifier. 

Multiply Card 

The multiply card performs a lo-bit by lo-bit multiply of the output from the add card 

and the multiplicative angle correction value B(9) from the increment card. There are two 

diagnostic ports: B(@) and the output of the multiplier. Three high-order bits of the multiplier 

are tested for overflow and an overflow bit is generated if the multiplier output is too large. 

Delta RAM Load Card 

The Delta RAM load card is basically a switching and selection circuit to load the pelta 

RAMS. The loading takes place via a DMA DR-1lB interface shared with the Inkjet Plotter 
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Control Cards. The loading of a constant into the Delta RAMS from the computer is a two word 

transfer; the first word is a control word containing the Delta RAM load’code (4-bits) and 12 

bits of RAM address. These 12 bits are stored in a register. The second word contains the 

constant to be loaded into the location addressed by the 12 bits of the stored address. The 

RAM load pulse is steered to the proper RAM by decoding the four high-order bits of the 12 

while the remaining eight bits serve as the input to all the RAMS’ address lines. While one 

set of RAMS are being loaded the other set is being used to provide the increment values for 

function update. The address lines of these active RAMS are not under computer control, but 

have been switched to the output of a counter. This counter increases by one every n pixels 

where n has been loaded into a RAM and has the range 1 5 n 5 63. Whenever the count increases 

by one, the active Delta RAMS supply a new increment value that is immediately used to update 

the angle correction functions as explained in the Delta RAM control card section. There are 

no diagnostic outputs from this card. 

Linear Combination Card 

The linear combination card is very similar to the matrix multiplier card in the classifier 

section of the pipeline. The multiplier is a 6-bit by la-bit multiplier. The linear coefficient 

values are the 6-bit 2’s complement numbers into the multiplier. The scaling and overflow 

bits tested on this card can be seen in Figure 19. There are two diagnostics on this card, one 

to read back the coefficients stored in the RAMS, and the other to provide the card output. 

There are sixteen of these cards, made identically, Eight of the cards have their outputs 

bussed together to form the numerator, and the remaining eight are bussed to form the denom- 

inator for the succeeding ratioing section. Any card can be accessed at any of the 16 clock 

times since the resultant summation is stored in a three-state holding register for the entire 

time a new summation is being formed. The card selection is accomplished by decoding values 

stored in a RAM which is addressed sequentially by the clock. At this point in the pipeline the 

number of data ChaMels is reduced to a maximum of eight. 

Linear Combination Control Card 

The linear combination control card contains the RAM and selection circuitry for selecting 

which LC cards will provide the numerator and denominator inputs to the ratioing section of 

the preprocessor. III addition it contains a la-bit by Is-word RAM to provide up to 16 dif- 

ferent constants to the denominator bus. Selecting this RAM as data on the denominator bus 

substitutes a constant divisor instead of the ratioing of data channels. The output of this RAM 

can be intermixed with the LC denominators. There are two diagnostic ports on this card, 

one to read the denominator bus, and the other to read the contents of the linear combination 

card selection RAM. A large portion of the diagnostic bus output selection is decoded on this 

card with the control being fed to the various cards in the Preprocessor. 

Command Card 

The command card receives commands from the computer via a DR-1lBDMA. This DMA 

device is a separate DR-1lB from that used for Delta RAM load; it is also used to transmit 
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commands to the classifier section. The main purpose is to load the RAMS in the Prepro- 

cessor other than the Delta RAMS. This loading is done in a similar fashion to the Delta 

RAM load card described earlier. To load a RAM requires a two word computer transfer; 

the first, which contains the’address is stored, while the second word, containing the data of 

the RAM to be loaded, is transferred. The diagnostic select code is also stored on this card 

and passed on to the linear combination control card. This was done because the fanout for 

RAM load selection and the fanout for Diagnostic selection required more pins than were 

available. The clock lines from the classifier are brought in and buffered for distribution to 

the Preprocessor cards. There are no diagnostic ports on this card. 

2.5.3 THE PIPELINE DIVIDER 

The MIDAS Preprocessor requires a division unit for the enhancement or normalization 

of incoming data vectors. The following describes both the process of selecting a suitable de- 

sign and the actual implementation. The implementation is discussed both from the standpoint 

of the arithmetic theory of the division algorithm and of the hardware realization. 

Specification 

Some of the design specifications for the divider include 

(1) a la-bit dividend(2’s complement) 

(2) a la-bit divisor (2’s complement) 

(3) a O-bit quotient (2’s complement) 

(4) the quotient should be correct for arbitrary signs of both the dividendand divisor 

(5) a 6-bit scalar (2’s complement) which adjusts the quotient by shifting it right or left 

(6) a l-bit division overflow 

(7) compatibility with the timing and electrical characteristics of the rest of the processor 

Design Alternatives and Selection Criterion 

It was immediately decided that the 300-ns clock period would require the division process 

to be subdivided and pipelined. The design questions which immediately arose were 

(1) Which algorithm should be used for the division ? 

(2) Which chips should be selected to implement the division? 

(3) How can the division process best be subdivided compatible with the 300-ns clock? 

These questions cannot be treated sequentially. Rather, they interrelate to form one complex 

design problem. For example, the availability of chips strongly influences the selection of 

the algorithm. 

The selection criterion was basically to minimize the cost of implementation. However, 

this did not imply minimizing chip cost. The cost of chips is a relatively small contribution 

to the overall design cost of the divider. It was decided that a better me&sure of cost was the 

number of cards required to implement the divider. Since the physical placement of chips on a 

card had already been standardized, the following were considered the major design objectives. 
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(1) Minimize the total number of chips where 24-pin chips are weighted equal to 2 l/2 

16-pin chips. 

(2) Keep the design simple to minimize the number of errors and debugging cost 

Three division algorithms were considered with fespect to the criterion described above. 

Binary Restoring Division 

Restoring division is the binary equivalent of decimal division as taught in elementary 

school. Normally the absolute value is taken of both input operands and their signs are used 

to give the quotient its correct sign. Thuqin the following discussion the dividend (numerator) 

and divisor (denominator) are both assumed positive. The quotient digits are selected from 0 

or 1; thus only positive quantities can be represented. The partial.remainder must remain 

positive at all times if the quotient is to be representable with digits of positive magnitude, 

The dividend (numerator) becomes the first partial remainder. Each division step, which 

generates one quotient bit, proceeds as follows. (1) The divisor (denominator) is subtracted 

from the partial remainder. (2) If the result is positive, it is shifted left one bit to form the 

new partial remainder; the quotient bit is 1. (3) If the result of the subtraction is negative, 

the old partial remainder is shifted left one bit to form the new partial remainder, and the 

quotient bit is 0. Some of the advantages and disadvantages are listed below. 

(1) The signs of the input operands must be handled by separate logic. 

(2) The quotient is generated in a 2’s complement form. 

(3) The scheme is simple in concept. 

(4) The weighted chip count was the highest of three approaches. 

Binary Non-restoring Division 

In non-restoring division, while the sign of the dividend is arbitrary, the sign of the divisor 

must be positive. The quotient digits are selected from {l,i} where i indicates a negative 1. 

Since the quotient representation allows negative quotients, the restriction that the partial re- 

mainder remain positive is now removed. The dividend again becomes the first partial re- 

mainder. Each division step computes one quotient bit and proceeds as follows. (1) The sign 

of the partial remainder is used to determine the quotient digit. A positive partial remainder 

generates a 1 while a negative partial remainder generates a 7. (2) The divisor is multiplied 

(an adder/subtracter is used) by the quotient digit and subtracted from the partial remainder. 

(3) The result is shifted left one bit to become the new partial remainder. Some of the ad- 

vantages and disadvantages of the non-restoring scheme are 

(1) only the sign of the divisor need by positive 

(2) the quotient may be converted to 2’s complement trivially 

(3) the weighted chip count was significantly lower than that for restoring division 

(4) chips were available to implement the division as a very regular array of adder/ 

subtractors 
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Radix 4, Redundant Division 

In the radix 4 scheme, the quotient digits are selected from {Z,l,O,i,a. Each quotient 

digit represents a-bits of result. Since there are five members in the quotient digit set, the 

representation is somewhat redundant. This allows the determination of the quotient digits 

from truncated versions (approximations) of the partial remainder and divisor. The scheme 

automatically takes care of input operands of arbitrary sign. 

A division step proceeds as follows. (1) Some high-order bits of the partial remainder 

and divisor are used to generate the next quotient digit by table look-up (a ROM is employed). 

(2) The divisor is multiplied by the selected quotient digit (requiring an adder/subtracter and 

a l-bit shifter) and subtracted from the partial remainder. (3) The result is shifted left 2 bits 

to form the.new partial remainder. Some advantages and disadvantages of this scheme are 

listed below. 

(1) The signs of the input operands are unrestricted 

(2) The scheme for conversion of the quotient to 2’s complement is non-trivial: 

(3) The weighted chip count was about equal to that for non-restoring division. 

(4) This scheme is significantly more complex conceptually than non-restoring division. 

(5) This scheme requires the burning of ROMs. 

Selection 

Based on our design criterion, non-restoring binary division was selected for implemen- 

tation. A major factor contributing to this selection was the availability of the Fairchild 9340 

adder/subtracters with built-in carry lookahead. This chip is ideally suited for implementing 

the division array. 

Implementation 

The divider was constructed on five cards, each containing one step of the five-step divide 

pipeline (see Figure 33). Thus, in each of the five cards, data which was latched on the previous 

card flows through combinatorial logic and is then latched on the current card. All latches are 

tied to a common clock. The first divide card is the pre-normalization card. The second, 

third, and fourth are identical divide cards, each of which produces four quotient bits. The 

fifth card is a post-normalization card. 

Pre-normalization 

There are three inputs to the pre-normalization card. The inputs are all 2’s complement 

numbers as follows: 

(1) A la-bit dividend 

(2) A la-bit divisor 

(3) A 6-bit scalar. 

While the dividend and divisor are held on inputs to the .pre-normalization card ‘for one clock 

period, the scalar value is read from a 16-word RAM (see Figure 34) on the pre-normalization 

card, capable of storing one scalar for each of 16 distinct Preprocessor clock cycles’. 
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The inputs are to be interpreted as follows: The nine bit quotient to be computed is 

s.sssqqsss = Ill-in. nmmnnmm/ddd.ddddddddd X 2ssssss 

where q represents a quotient bit, n represents a dividend bit, d represents a divisor bit, and 

s represents a scalar bit. The binary points are as indicated. Thus, the scalar adjusts the 

magnitude of the quotient by shifting it right or left. Note that the scalar may take on a negative 

value. 

One can see, in the block drawing of the pre-normalization card (Figure 34), that the 

dividend is merely latched on the card and passed onto the first divide card (Figure 33). The 

divide array handles any dividend input with no overflow. The dividend is latched on the pre- 

normalization card to keep the dividend in step with the divisor. On the other hand, the divisor 

must be normalized before entering the divide array to prevent overflow within the array. The 

normalization process consists of taking the absolute value of the divisor and shifting left until 

the bit immediately to the right of the sign bit is a 1. The correct quotient value is maintained 

by adding to the scalar value, the number of places shifted. 

In Figure 34, one can see that the absolute value of the divisor is taken at the input of the 

pre-normalization card. This is done by wiring 3 Fairchild 9340’s as a la-bit adder/subtracter 

and using the complemented sign of the input to control the add/subtract function. The output 

of this absolute value circuit is positive (sign bit = 0) except for the case where the divisor 

was the largest negative number (100.000000000). This divisor has no absolute value and gen- 

erates an overflow during pre-normalization. The sign of the divisor is saved and latched four 

times on the pre-normalization card before being’passed to the post-normalization card (Fig- 

ure 33). The four latches keep the sign in step with the quotient, which is latched on three 

divide cards before entering post-normalization. 

The next step in pre-normalization is to count the number of high-order zeros (excluding 

sign bit) of the positive divisor. For example, if the absolute value of the divisor looks like 

OOO.lXXXXXXXX (X indicates either 1 or 0) then, the number of high order zero’s computed 

is 2. This operation is done by 2 Fairchild 9318 priority encoder chips. The result appears 

as a $-bit binary quantity. A zero valued divisor cannot be scaled and causes another overflow 

condition during pre-normalization. 

The 4-bit quantity discussed above is used to control a shift network which shifts the 

divisor left O-15 places. This is more than sufficient to normalize any non-zero divisor. 

The shift process is done in two parts. In the first part, the most significant bit of the 4-bit 

shift count is used to control three Signetics 8233 a-input, 4-bit digital multiplexers. These 

multiplexers are wired to shift 0 or 8 positions with zero’s injected in the low order end. The 

second part of the shift process is carried out by three Signetics 8243 scalar chips which are 

wired as a la-bit, O-7 position left shifter. The low order three bits of the 4-bit shift count 

control the amount of shift. This normalized divisor is now latched for use on the divide cards. 
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The pre-normalization card also performs an exponent computation which corrects for 

any shift done during divisor normalization. Let C be the number of places the divisor is left- 

shifted during pre-normalization. Let S be the scalar as read from the RAM. In order to 

maintain the correct quotient value, we can see 

Q = (N/D) x 2’ = (N/(DXZ~)) x 2(s+C) 

Thus, a 6-bit exponent E = S + C is computed and used to scale the quotient. This exponent 

computation is done with two Texas Instrument SN74283 4-bit adders. Note that the carry 

into this adder is set so as to actually compute E = S + C + 1. We shall explain this +l term 

later. 

Division 

The purpose of the pre-normalization card is to eliminate the possibility of overflow during 

the non-restoring division by properly scaling the inputs. Clearly, the largest quotient should 

be generated when the largest dividendand smallest divisor are used for inputs. Pre-normali- 

zation guarantees that the divisor must be greater than or equal to 010.000 000 000. .The larg- 

est dividend is equal to 011.111 111 111 positive or 100.000 000 000 negative. Thus, the largest 

quotients which we would like to represent are: (4-2-g)/2 = 2-2 -10 and, -4/2 = -2. 

The dividend (pre-normalization output) becomes the first partial remainder with no shift 

(see Figure 33). Thus, in the intermediate non-restoring quotient (the quotient as generated 

by the divide array), the high order digit has weight 1. The intermediate quotient looks like: 

r.rrr rrr rrr rrr where r E{ l,i>. The range of representable quotients is from 1.111 111 111 

111 = 2-2-12 
----__------- 

to 1.1 1 1 1 1 1 1 1 1 1 1 1 = -2+2-12. Thus, the largest positive quotient (com- 

puted above) is within the range while, the largest negative quotient is closely approximated. 

We hope that this will satisfy the reader that the division array does not overflow. 

The division array is constructed on three identical cards each of which computes four 

quotient bits. The thirteenth quotient bit is taken from the sign bit of the last partial remainder. 

Each non-restoring divide step is performed as follows (see Figure 35). Three Fairchild 9340 

4-bit carry lookahead adder/subtracters are interconnected to form a 12-bit unit. Four rows 

of adder/subtracters are used to compute the four quotient bits on a divide card. Consider the 

output (a partial remainder) of one row of adder/subtracters. The sign bit of the partial re- 

mainder is complemented to form a quotient digit. Thus, a negative partial remainder gener- 

ates a 0 (7) quotient digit while a positive partial remainder generates a 1. The partial re- 

mainder is shifted left one position (0 is injected into the I.SB) before entering the next row of 

adder/subtracters. The quotient digit times the divisor is then subtracted from this shifted 

partial remainder to form the new partial remainder. This is done by wiring the sign bit of 

the shifted partial remainder to the addjsubtract control line of the next adder/subtracter row. 

Between divide cards, the shift of the partial remainder is wired on the back plane which 

permits constructing 3 identical divide cards. The dividend becomes the first partial remainder 
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with no shift, the sign bit is extended one position (see Figure 33). The partial remainder 

shift is wired between the first and second, and second and third divide cards. 

Each divide card contains a la-bit quotient latch. Between divide cards, a four bit left 

quotient shift is wired. The four quotient bits computed on a card are shifted into the low 

order positions of the la-bit latch. Thus, at the third divide card, a full la-bit quotient ap- 

pears in the quotient latch. Again we mention that the 13th quotient bit is computed from the 

sign of the last partial remainder. 

Post-normalization 

Post-normalization begins with the conversion of the 13-bit non-restoring quotient to a 

la-bit binary quantity with separate sign bit. Consider the non-restoring quotient R = 

r.rrrrrrrrrrrr where r e{l,i). Let A represent the weighted sum of all positive digits in the 

non-restoring quotient. Let B represent the weighted sum of the absolute value of the negative 

digits in the non-restoring quotient. For example, if R = 1.1~11~11111 then A = 1.100110011111 

and B = 0.011001100000. With these definitions of A and B, we can write the following equations: 

R=A-B 

2 - z-l2 = A + B 

The second equation holds since the sum of the weight absolute value of all quotient digits is 

always 1.111111111111 = 2 - 2-12. From the equations above, we write: 

R+2-2 -12 = 2A 

R=2A-2+2 -12 

R/2=A-1+2 -13 

The addition of 2 -13 affects the 14th dig&t position and can be ignored. We have: 

R/2=A-1 

Since, i’s in the non-restoring quotient are represented by O’s, A is the non-restoring quotient 

treated as a binary number. To compute R/2, all we have to do is add -1 = 1.000000000000 to 

A. This corresponds to complementing the sign bit (there can not be any overflow). 

Note that we have computed R/2 above. In order to scale the quotient up by a factor of 2, 

a carry is injected into the exponent computation on the pre-normalization card. 

The post-normalization card (see Figure 36) first inverts the sign bit for reasons described 

above. Then the absolute value is taken of the 13-bit 2’s complement quotient. Since the sign 

of the result is guaranteed to be zero, this process can be carried out by a la-bit adder/sub- 

tractor group. Overflow occurs whenever the absolute value is taken of the most negative 

quotient. The quotient sign is saved for later use. 
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The final step of post-normalization is to compute the correct quotient from the non- 

restoring quotient, the exponent, the sign of the divisor, and the sign of the non-restoring quo- 

tient. The magnitude of the final quotient is computed by the scaling operation: 

Q=Rx 2E 

This is then either complemented or not, according to its proper sign. 

The exponent E is a g-bit 2’s complement number. An 8-bit adder/subtracter is used to 

convert E to sign and magnitude form. The sign will be used to control the direction of a 

shift while the magnitude will control the shift distance. 

We are computing a g-bit quotient. However, the sign is carried separately so there are 

only 8-quotient bits. These eight-magnitude bits are scaled by the exponent as follows: Again, 

the shifting is done in two stages. The first stage shifts 0 or 8 positions left. A shift right of 

eight (or more) positions leaves a zero value for the 8-bit quotient magnitude. Thus, the right 

shift is done by disabling the shifter. The left shift is done by five a-input 4-bit digital multi- 

plexers (SN75157). Two of the multiplexers are used to compute the eight bits shifted out of 

the shifter, These eight bits are or’ed into the overflow. The other three multiplexers shift 

the 12 quotient bits 0 or 8 places left. 

The second stage of the shifter consists of three 8243 scalar chips wired to shift 12 input 

bits O-7 places right or left onto an 8-bit output bus. One more scalar is used to compute the 

bits shifted out on a left shift. These are or’ed into the overflow. These scalars are con- 

trolled by the sign of the exponent (right/left) and the three low-order bits of the exponent 

magnitude (O-7). The 8-bit output of this shifter has the properly scaled 8-bit quotient magni- 

tude (in complemented form). 

The sign of the divisor and the sign of the non-restoring quotient are now exclusively 

or’ed to compute the final quotient sign. The 8-bit quotient magnitude along with an implicit 

leading 0 sign bit is added to or subtracted from a g-bit zero according to the final quotient 

sign. This g-bit operation is carried out by two 9340 adder/subtracters and an exclusive or 

which adds the quotient sign to the carry out of the adder/subtracters. Note that the quotient 

magnitude is inverted (it was in complemented form) in this same step. There is no possi- 

bility of overflow and, the result is the desired g-bit 2’s complement quotient. 

Conditions for Division Overflow 

The conditions which lead to division overflow can be listed as follows. 

(1) If the divisor is the largest negative number (100.000000000), it cannot be comple- 

mented to form the absolute value- 

(2) A zero-valued divisor cannot be properly normalized. 

(3) If the non-restoring quotient is the largest negative number (i.iiiiiiiiiiii), over- 

flow occurs during the process of converting to 2’s complement and taking the ab- 

79 



solute value. In order for this condition to occur, the dividendmust be the largest 

negative number (1.00000000000) while the normalized divisor must be 010.000000000. 

(4) If the computed exponent has absolute value greater than or equal to 16, the post- 

normalization shift network cannot properly scale the quotient. 

(5) Any non-zero high-order quotient bits which are left shifted out of the quotient during 

the post-normalization scaling operation will result in an incorrect quotient value. 

Simulation 

The entire division process was simulated in detail in APL. The division algorithm is 

somewhat complex and difficult for the design engineer to grasp as a whole. The simulation 

is an effective tool for establishing that the result is indeed the quotient of the dividend and 

divisor inputs. Thus, the simulation establishes some confidence in the design. In addition, 

the simulator is useful in testing various overflow conditions and sign processing. 

A number of errors were uncovered using the simulation long before the wirewrap was 

done. Hence, it is valuable in reducing the problems encountered during the logic debugging 

phase of the design process. A listing of the APL simulator and a trace of a sample simula- 

tion run are included in the Appendix. 

2.6 RAMTEK COLOR DISPLAY SYSTEM 

The color display system provides a means of displaying imagery on a three-color CRT. 

This imagery may be either unprocessed or processed data with which the operator may inter- 

act to designate areas for analysis or processing. 

The display uses MOS storage for screen refresh and allows display of 512 by 512 elements 

on the screen at 5 bits (plus an overlay bit) per scene element. Each 5-bit element may be 

translated into three 4-bit signals by table-look-up memories. The overlay channel is em- 

ployed to designate points as a cursor or to indicate boundary locations in designating fields 

for analysis. 

A second black and white CRT display is employed to present the menus for control of the 

system. This CRT normally displays the overlay, or sixth, bit of the display element. 

Control is provided by an alphanumeric keyboard and track ball which controls the cursor 

location. I 

Interfacing to the PDP-11/45 is provided by a standard DR-11B connected to the display 

and trackball, and a DL-11C connected to the keyboard. 

2.7 INKJET PRINTER 

The inkjet printer subsystem consists of two units, the printer and its control interface 

to the PDP-11/45 Unibus. 
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2.7.1 PRINTER 

The inkjet printer is the device chosen for fast, hard-copy, color output for the MIDAS 

system. This printer allows the user to obtain a pictorial copy of the data, unprocessed or 

processed, in about five minutes with a picture element size of 0.2 mm X 0.2 mm (0.008 X 

0.008in.) for a picture size up to 11 l/2 X 11 1/2in. (up to 1430 X 1430 elements per sheet). 

Each picture element is printed by *three separate ink-jets using three color-negative primary 

colors (magenta, cyan and yellow). Each primary color may be controlled in its density over 

approximately 40 quanta at each element printed, affording a color range for each element of 

approximately 403 (64,000) separate colors. 

The printer operates at a rate of approximately 50 I.rsec per picture element, printing a 

line in 66 msec (15 rev/set) on paper held on a rotating drum. A carriage holding the three 

jets is moved horizontally along the drum by a helical lead screw driven by a stepper motor. 

The lead screw pitch is 2 mm and advances a minimum increment of 0.01 mm per motor step. 

Normal operation of 0.2 mm line spacing requires 20 steps per revolution and may be given 

continuously during printing or between lines. 

The ink jets are controlled during printing by electrostatic gating of the inkjet using 

pulse duration modulation. Each jet produces a stream of droplets at a rate of approximately 

lo6 drops per second and has a scattering distribution such that a pulse of up to 50 drops 

spreads over a spot of about 0.2 X 0.2 mm area. Control of element density is thus obtainable 

by gating a packet of droplets onto the drum within the 50 psec pixel interval. Droplets are 

gated by placing a charge, either negative or zero, on each droplet by applying a voltage to the 

nozzle assembly. The stream is directed toward the drum through a pair of charged deflection 

plates. It passes through an aperture to the drum when the droplets are uncharged or is de- 

flected into a catcher when the droplets are charged. 

2.7.2 CONTROL INTERFACE 

The Control Interface which connects the printer to the PDP-11/45 Unibus consists of two 

parts: (1) a specially designed section for electro-mechanical control of the printer and (2) a 

DEC direct memory access, DR-11B custom user interface for transferring digital control 

and data signals to the special section. The DR-11Bwas chosen because rapid transfer of data 

is required; prior system use and software support made implementation straightforward. 

The special purpose control section is shown in block diagram form in Figure 37. There 

are ten signals passed between the printer and this unit. These are: Power On, Trigger, Left 

Margin, Right Margin, Drum Motor On, Stepper Motor Step, Stepper Motor Direction, Ink 

Color 1 On, Ink Color 2 On, and Ink Color 3 On. The first four signals originate at the printer 

while the other six are control signals from the computer interface. Three of the printer sig- 

nals are indicators: power switch on, print head at right or left margin. The trigger signal 

indicates that the drum is in the proper position to start the printing of a line. The drum 
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motor can be turned on or off under computer control by loading the appropriate value into the 

drum motor register shown in Figure 37. The stepper motor moves one step every time it is 

pulsed. The maximum stepping rate is obtained by driving the motor with a 450-Hz square 

wave. The direction of rotation is controlled by the direction signal. 

The special purpose interface has two major parts as shown in Figure 37. One part con- 

trols the turning on and off of the three ink jets, the other controls the stepper motor. The 

control of the ink jets is accomplished by turning them on for a period of n/128 X 50 Psec, 

where the value “n” is under computer control. Within every 50 Psec interval the interface 

requests two 16-bit words from the computer and loads them into a first rank register. At. 

the beginning of the next 50 psec pixel-print cycle three 6-bit “color words” are loaded into 

the second rank registers from these first two words. The outputs of these registers are fed 

to the address lines of three 7-bit RAMS. The output of each RAM feeds one side of a digital 

comparator while the other side is fed by a counter. The counter starts at zero when these 

words are loaded and counts up to 128. As long as the counter is less than the binary value 

from the RAM the particular color prints until the value of “n” is reached. The cycle repeats 

every 50 &sec and ends when the computer indicates all data for that line has been transferred 

by turning off the ready line of the DR-11B. The cycle is primed again when the computer sets 

up another DMA transfer and issues a “GO” signal. The actual printing and data requests 

start after this “GO” and a “TRIGGER” signal from the printer is received at the interface. 

The use of the RAMS as a color lock-up table permits changing colors easily and rapidly with- 

out changing the data values. 

The stepper motor control has four different modes of operation: (1) slew right or left; 

(2) make a large number of steps while not in the print mode; (3) step at the end of each line 

of print; and (4) step while printing. The slew mode is achieved by setting a hit in the step 

type register which permits a 450-Hz signal to be applied to the stepper motor. When a mar- 

gin is reached the margin indicator signal is fed back to the computer which senses the end 

of the slewing action. The large-number-of-steps mode is used to position the recording head. 

A la-bit register is loaded with some binary number. The interface will then send that num- 

ber of pulses to the stepper motor. The maximum number of 4096 pulses moves the recording 

head about 40 mm (1.5 in.). 

The step-at-the-end-of-line mode requires that a “GO-Trigger-End-of-Line sequence 

has occurred. At that time the interface sends “n” pulses to the stepper motor, where n is the 

number loaded in the la-bit register. Usually this number is 20, to provide printing of con- 

tiguous lines. If the stepper motor is stepping and the interface receives the Go-Trigger 

combination to start printing, the interface will not print until the stepping is completed and 

another trigger pulse is received. 

The step-while-printing mode causes the stepper motor to make one step every n X 5n 

,usec. This will produce a skewed picture. The number ‘In” is loaded into the previously 
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mentioned 12-bit register, Usually this number is about 50 to produce contiguous lines; it 

cannot be less than about 25 because the pulse rate would be too high for the stepper motor 

to follow. The interface will halt stepping in this mode if a Go-Trigger-Trigger combination 

is detected because this would put gaps in the picture. 

2.8 GENERAL-PURPOSE COMPONENTS 

The general-purpose components now used in the system are shown in the block diagram 

of Figure 38. The basic computer system is configured with the DEC PDP-11/45 CPU with 

core, disc, and tape storage. Program development is normally done with standard units, a 

line printer, an alphanumeric CRT and a keyboard/printer. 

MIDAS operation uses the RAMTEK components, the mass disc and the inkjet color printer 

for image display, storage and printing, respectively. Data input may be provided by analog 

tape,high-density digital (HDT) tape or computer-compatible tape (CCT) in 7- or g-track for- 

mats. Classification and preprocessing are done in the special purpose pipelines, which are 

treated as Unibus -compatible peripherals. 

All of the above components are interfaced to the standard DEC Unibus, principally by 

DMA (DR-1lB) devices or single word transfer (DR-11C) devices which are not shown, for the 

sake of simplicity. 

The general-purpose system is actually a fairly powerful “mid?‘-computer, employing the 

variety of standard hardware and software tools available in the DEC-11 system. 
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MIDAS SOFTWARE 

3.1 INTRODUCTION 

3.1.1 DIRECTION AND -PURPOSE OF SOFTWARE 

The software requirement on the MIDAS project consisted of the following main tasks. 

(1) To control the high-speed flow of data through various pieces of hardware constructed dur- 

ing the project, specifically input data transfers to and output data transfers from the MIDAS 

Preprocessor/Classifier hardware. (2) To maintain the large information system necessary 

for multispectral data processing and analysis, interfacing this information data-base to the 

hardware data-transfer control features. (3) To develop applications programs, in the various 

multispectral data processing areas, which are highly user-interactive and which, as a result, 

reduce the total number of man-hours necessary to complete a data analysis task. In brief, 

these were the major responsibilities of the software portions of the Phase II MIDAS project. 

To expand on these general requirements, it is necessary to reiterate the hardware con- 

structs which set MIDAS apart from other multispectral data analysis systems. Of course, 

the major hardware innovation is the Preprocessor/Classifier pipeline which performs the 

high-speed data manipulation functions of (1) multiplicative/additive scan line correction as a 

function of scan angle, (2) linear combinations of channels, (3) ratios of channels or of linear 

combinations of channels, and (4) calculation of classification type, using -the multivariate quad- 

ratic decision rule. The speed of this piece of hardware (approximately 2 X lo5 decision cal- 

culations per second) changes the emphasis of multispectral processing from batch-oriented’ 

data processing, where job set-up time is less than or about the same as the data-processing 

or classification time, to a situation where the emphasis must be on the man/machine inter- 

action time, i.e., job set-up time. In the MIDAS system, the data-processing time has been 

drastically reduced by a factor of 1’00 to 1000, depending on the speed of the data source, com- 

pared to general-purpose computer software classification programs. In order to make use 

of this time/cost reduction, the man/machine interaction time must be reduced. 

The method chosen to decrease the man/machine interaction time and increase the overall 

data processing rate (and thus the system’s cost effectiveness and cumulative data throughput 

rate) has two main components. First, it provides the user with as much information as possi- 

ble concerning various parameters of the processing task, and thus makes more effective use 

of the human’s intuitive decision-making capabilities (which are still an integral part of most 

multispectral data analysis tasks). Second, it decreases the average access time to randomly- 

selected portions of multispectral data in order to decrease the time needed to perform certain 

pre-classification statistical analysis functions. One of the most powerful methods of providing 

information to the user is through the use of color and grayscale images of raw and processed 

multispectral information. These images can be displayed on two devices in the MIDAS system: 

(1) a tiolor/BW CRT display system; or (2) a color image plotter for hardcopy output. These 
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images can provide the user with the necessary visualization of the data to guide his decision- 

making processes in job set-up, especially in the area of training and/or test field selection. 

Additionally, by using various interactive devices attached to the display system (specifically, 

an interactive trackball and a keyboard) to control the flow of processing, quicker response 

times and more complete information display can be achieved, thereby reducing the job setup 

time. 

In order to reduce the processing time, two pieces of hardware, a 58-million-byte disk 

system and a high-density digital tape (HDT) system, are incorporated into the design. The 

disk system, which allows storage of large amounts of raw multispectral data and processed 

results, provides a much lower access time to random portions of a data scene than does a 

CCT-based system. Thus,all processing and analysis is performed using the disk database, 

reducing the average data-access time to the order of milliseconds from that of CCT-based 

systems with average access times ranging from hundreds of milliseconds to hundreds of sec- 

onds. Use of the high-density digital tape system will provide significant increases over CCT’s 

in the efficiency of loading raw data onto the disk system, and can also be used as an-input data 

device capable of driving the MIDAS at its maximum data processing rate. However, there is 

still a data output limitation due to the average data transfer rate possible with the bulk-storage 

disk system, and the high-density tape system will have to be slowed down by at least a factor of 

two to satisfy this limitation. 

3.1.2 SOFTWARE OVERVIEW 

In developing applications programs which perform the analysis and hardware-control 

functions of the MIDAS system, it was decided that the effective limit of 24K words under the 

DOS/BATCH operating system was inadequate for most of the applications. Two methods for 

alleviating this virtual memory problem were investigated: (1) modification and addition to the 

DEC DOS/BATCH operating system to provide a 65K-word program environment, through the 

use of the PDP-11/45’s KTll-C memory management hardware option, or (2) use of the DEC 

FLSXll-D multitasking operating system. 

The DOS/BATCH modification and addition scheme was selected, mainly because an in- 

house-developed operating environment could be more finely tailored to the needs of the MIDAS 

system. However, the other major considerations were the shortcomings Lf the RSXll-D sys- 

tem, in the initial planning periods of Phase II MIDAS. RSX11-D was a new DEC software prod- 

uct, and as such was experiencing the initial field-test problems found in most new systems; 

in addition, the high purchase price placed on the operating system with source code and auto- 

matic DEC update service seemed unreasonably high for tImbudget of this project. 

The modifications to the DOS/BATCH system consisted mainly of changes to the system 

hardware description and the insertion of several device driver routines into the monitor to 

control the various new pieces of hardware obtained in Phase II MIDAS. Additions to the sys- 

tem include a set of routines to handle the virtual.addressing scheme of the KTll-C memory 
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management unit, to handle the interfacing of the user-program calls to monitor utility routines, 

and to process calls to MIDOS (MIDas Operating System) utility routines via the TRAP instruc- 

tion. If more core memory had been purchased, a 65K-word program operating environment 

would have been possible; but with the purchase of an additional 32K word section of memory, 

approximately 40K words are available for a resident application program. Program and over- 

lay loading are some of the services provided by MIDOS. Additionally, the display of interactive 

menus and subsequent interaction with these menus is accomplished via calls to MIDOS. 

3.1.3 APPLICATION PROGRAMS 

Within the MIDOS and application program system, there are presently five information 

systems to be maintained and used by application functions. These are 

(1) the multispectral image data system (stored on the bulk storage DIVA disk system) 

(2) the field-definition information system (stored on the RKll-C system disk) 

(3) the scan-line correction function information system (stored on the RKll-C system 

disk) 

(4) the statistical signature information system (stored ‘on the RKll-C system disk) 

(5) the interactive-menu/display file system (stored on the RKll-C system disk) 

The first four of these information systems are modified and accessed by all applications 

programs, while the fifth is set-up off -line and can be thought of as an integral part of the pro- 

gram code associated with each application. Consequently, this information system cannot be 

modified by an application program; it can only be accessed for use. 

The applications programs which have been developed follow to a large degree the standard 

functional breakdown associated with most current multispectral data analysis systems. The 

applications are broken down into the following areas: (1) IMAMAN, the multispectral data- 

base control program which performs image loading and file maintenance functions; (2) DISPLA, 

the data-display program which provides for color or grayscale image generation in both CRT 

and hardcopy modes; (3) FLDMAN, a field-definition information system manipulation program 

which allows user-definition of fields (polygonal regions within a multispectral data scene) for 

use in training processes and post-classification analysis; (4) STAT, a package of statistical 

routines which use the field-definition and multispectral data information to calculate signa- 

tures and scan line correction functions; (5) HDWCON, a MIDAS-hardware control program, 

which loads all hardware RAMS in the MIDAS,conditions it for a particular operation, such as 

multivariate classification or ratioing, and creates a disk file with the results; and (6) PANALY, 

a post-classification analysis program, which helps to indicate the success or accuracy of a 

given classification processing task. The details of the functional capabilities and the actual 

programs are given in Section 3.3. 

All of these applications programs interact with the PDP-11/45 computer via the process- 

control keyboard and trackball associated with .the RAMTEK CRT display system. Associated 

88 



r- -~ - __ 

with the process-control keyboard are several keys, designated super-function keys, which 

suspend the operation of a current application program, to perform some global function nec- 

essary for efficient system operation. The two current super-functions to be implemented in 

Phase II MIDAS are the scrolling/zooming function,and the function which terminates a current 

application and allows the user to select a new application function without disturbing the in- 

tegrity of any of the information systems which may be in the process of modification by the 

current application. 

The following procedure illustrates a possible processing sequence as an example of the 

MIDOS software system in -operation. 

The raw multispectral data must be loaded into the bulk- 

storage disk data-base. Assume that the data set to be proc- 

essed is a LANDSAT- data frame stored in LANDSAT- 

quarter-frame format in four files on two O-track 800 BP1 

computer-compatible tapes. The user would specify the 

scene associated with each quarter-frame and loading of the 

data onto disk would proceed. A full-frame multispectral 

data file would be created in the bulk-storage information 

system, under a filename specified by the user. 

The next processing step might be to display various 

channels of the raw data on the CRT, looking for the best 

feature-discrimination (i.e., distinction between ground- 

types). A hardcopy of the color image could be produced and 

taken off-line to extract line and pixel number selection for 

field-definition, possibly the next logical processing step. 

In order to calculate signatures based on several areas, 

the boundaries of these polygonal regions must be defined by 

the user. These definitions may have been decided upon off- 

line through the use of available hardcopy and imagery, and 

could be, punched on cards, stored on tape, and read directly 

into the system. Alternately, using the cursor/trackball com- 

bination in conjunction with the displayed CRT image, polygonal 

fields can be drawn on the displayed image and entered into the 

field-definition information data-base for use by subsequent 

processing functions. 

If a classification is to be performed, signatures describing 

each class must be entered into the signature information sys- 

tem, either from CCT (and thus calculated off-line or restored 
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from previous processing runs), or through calculation of 

the signature statistics using subsets of fields previously 

defined. 

After a possible analysis of the ‘signatures is performed, 

the user.must select the signatures and the subset of channels 

of the raw multispectral data image to be used. These signa- 

tures will be loaded into the classifier, and the classification 

will be performed on a user-specified subset of the scene. 

Output of classification results will be made to a user-speci- 

fied disk file. A count of the number of pixels per class will 

be produced. 

After classification, analysis of the results ‘might take 

one or both of the following methods: color display of the 

classification file or statistical analysis of a pre-selected 

subset of the classified scene. This analysis could take the 

form of a matrix describing the success of the classification 

calculations for each class, assuming homogeneity of a par- 

ticular class within each of the test areas designated, and 

also give the number of “incorrect” classifications, as well 

as the overall proportions of each class in these test areas. 

3.1.4 DIAGNOSTICS 

Several diagnostic programs were written under MIDAS Phase II, most of which deal with 

the new pieces of hardware which have been added to the system. CHECK4 is a program which 

provides a probing mechanism to access all of the diagnostic ports within the MIDAS Pre- 

processor/Classifier hardware. ‘CHECK8 is a diagnostic used to detect data transmission 

errors through the MIDAS hybrid circuitry as well as through the Preprocessor. IJEX and 

IJPTST are two diagnostic programs used to test and control the operation of the inkjet 

plotter and its computer interface. 

3.2 OPERATING SYSTEM 

As was discussed in the system overview, an immediate requirement for the Phase II 

MIDAS software effort was the extension of user-program storage from -24K words toward 

65K words with a minimum of 32K words. Since no operating system available at the start of 

Phase II satisfied this requirement, system software was devised which would meet this need 

as well as some of the other specialized requirements of the software effort as it was speci- 

fied. The major ‘,reas of effort in the system software developed were (1) memory allocation, 

in conjunction a&h the hardware KTllC memory segmentation unit, (2) dynamic program 

loading, (3) interface user programs with the DOS/BATCH system, especially in the areas of 
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I/O, and (4) implementation of device drivers for non-standard hardware developed in Phase II. 

Some of the considerations that were taken into account in the design and implementation of 

MIDOS were: (1) keep the MIDAS components as small as possible in terms of minimum 

core requirements, (2) provide the mechanism for real-time response to a user interacting 

with a menu display system, and (3) provide a common environment-description area for inter- 

program-segment communication. 

3.2.1 DOS/BATCH 

The operating system which is used for software applications to the MIDAS project is com- 

posed of two major components: DOS/BATCH [ VO9-29C] and the MIDOS system components. 

The Digital Equipment Corporation’s DOS/BATCH Operating System VO9-29C is used, with 

subsequent released correction updates, and with the addition of several device drivers. The 

drivers which were written handled the following non-standard peripherals: (1) the RAMTEK 

imaging display CRT system, (2) the inkjet printer and preprocessor RAM loading interface, 
(3) the process-control keyboard device associated with the RAMTEK system, and (4) the 

VERSATEK line printer-plotter. No modifications to this operating system have been made 

to facilitate the incorporation of the MIDOS components. Both DOS and MIDOS are resident in 

“kernel” virtual space of the PDP-11/45. MIDOS is responsible for the set-up and control of 

the user-program which is resident in user virtual space. 

3.2.2 MIDOS INITIALIZER 

This is the first component of the MIDOS system which is brought into core as a standard 

load module by the DOS monitor. It is possible to run MIDOS in a special system debugging 

mode through console switch register settings. In a normal operation, however, this mode 

would not be used. Initially, INIT loads a package which contains the modules MMSERV, 

ERROR, and TRAPS. These routines are loaded separately from INIT (although they are part 

of the MIDOS system) so that in the debug mode, different versions of these modules could be 

loaded without confusing file manipulation prior to loading. After these three MIDOS compon- 

ents have been loaded, INIT initializes all link blocks in the system common area, thus making 

all device drivers resident in “kernel” virtual address space. 

Then the EMT, TRAP, and KTllC interrupt vectors in low-core (kernel addresses 303, 

348, and 2508 respectively) are initialized to provide transfer to the proper location within 

the routines TRAPS and MMSERV. The existence of all non-resident MIDOS trap routines is 

verified and their locations on disk are stored in the trap residency table. The KTllC memory 

segmentation unit is then initialized by loading the “kernel,” “supervisor,” and “user” PARS 

(page address registers) and PDRs (page descriptor registers). Next a TRAP 000 instruction 

is issued to load the first application program. In debug mode, any user program may be 

specified; in non-debug mode the program USERAP, which allows the user to select an appli- 

cation program, is loaded. 
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3.2.3 MEMORY MANAGEMENT SERVICE ROUTINE (SERVE) 

This MIDOS component module contains three separate routines; MMSERV, BYPASS, and 

SISERV. MMSERV is the routine which services the KTllC memory segmentation unit inter- 

rupts. The only interrupts which are enabled from this hardware are those which are generated 

by page addressing errors, i.e., attempts to address a virtual memory which does not exist. 

Since the circumstances which generate an interrupt into this routine are non-recoverable, a 

fatal system error indicating the cause of the problem is issued. BYPASS is a routine which 

intercepts the interrupts which are generated by the execution of an EMT or TRAP instruction 

by the program executing in “user” virtual space. Since both the “kernel” space and the “user” 

space have separate stacks, and since these stacks are the mechanism for passing arguments 

in the EMT as TRAP calls, BYPASS is responsible for transferring information from the “user” 

stack to the “kernel” stack before entry to the routine designated by the EMT or TRAP instruc- 

tion. It is also responsible for the transfer of information from the “kernel” stack to the “user” 

stack subsequent to execution of the called EMT or TRAP routine. SISERV is the routine 

which services stack limit register violations, i.e., when the “user” or “kernel” stack falls 

below the limit of memory available to the virtual address space. Again, since the circum- 

stances which generate an interrupt into this routine are non-recoverable, a fatal system error 

is generated. 

3.2.4 ERROR HANDLER ROUTINE (ERROR) 

This routine is used for all error reporting from MIDOS. It is responsible for all non- 

recoverable error messages, and thus it must return the state of the machine to a condition 

which coincides with the environment expected by DOS/BATCH. As such, this routine must 

disable the KTllC memory segmentation unit, reset the TRAP and EMT vectors to their former 

values and release all I/O link blocks and device drivers. A call is then made to the DOS/ 

BATCH error diagnostic package (EDP) which then issues the requested error message. 

3.2.5 TRAP HANDLER ROUTINE (TRAPS) 

This routine is responsible for calling the user’requested TRAP routine. Since there 

are both resident and non-resident TRAP routines, TRAPS must determine if the requested 

trap routine is currently available. If the routine is non-resident and not currently residing 

in the trap buffer within MIDOS, it must be acquired from the disk and loaded into the trap 

buffer. If the routine is resident, no loading is necessary. TRAPS sets up the kernel stack to 

overlay the user stack and thus passes arguments to and from the stack routine. The current 

occupant flag is set to indicate that a routine is present in the trap buffer. Control is then 

passed to the trap routine. 

For all non-resident traps, i.e., those trap routines which are stored in “core-image” 

format on the RK-05 disk, there is a fixed naming convention which is expected by the routine 

TRAPS. All non-resident trap routines are referenced by number and must have a filename 

of the format “TRAP. xxx[l,G]” where xxx=trap reference number. 

92 



r-- - 

3.2.6 TRAP ROUTINES (TRAP Xxx) 

Trap 600 -Program Loader 

This resident trap routine is used to call in a new segment of user-program into user- 

virtual space. It is capable-of using three different types of input modules: LDA, LDI and 

LDD load modules. An IDA-module is assumed to have its instruction and data program code 

in a single 32K word area and,thus,in the KTllC memory segmentation unit set-up, I-space 

(instruction space) and D-space (data space) are overlaid. If the module requested for loading 

is not an LDA module, the LDI module is assumed to contain up to 32K words of instruction 

code and an associated LDD module is assumed to contain up to 28K words of data (the remain- 

ing 4K words allow access to the physical hardware address page). This loading scheme allows 

a 60K word program environment. I-space and D-space in this situation ar.e not overlaid. 

This trap module is composed of eight major routines: PLOADR, RCOMD, LOADM, ASSIGN, 

GETHDR, GETBYT, CLEAR, and CAULK. 

TRAP 000 operates as follows, After removing and saving all trap arguments from the 

stack,all of user core is zeroed. The COMD (communications directory) from the requested 

load module is obtained and the relevant information is saved in the system common area. 

Next, dependent on the type of modules to be loaded (either LDA or LDI/LDD), the necessary 

virtualpages in L.- and D-spaces are computed. LOADM is called to unpack each load module 

segment found by GETHDR into the core allocated by ASSIGN. 

Trap 001 -Overlay Loader 

The function of TRAP 001 is to load a module anywhere in existing core without altering 

the program environment of the code which has requested the overlay. This non-resident mod- 

ule contains the routines OVERLAY, OLOADM, and EXIT and accesses the routines RCOMD, 

CLEAR, GETBYT, and GETHDR, all of which are part of the resident TRAP 006. 

The operation of TRAP 001 is as follows. The overlay module file is read and its COMD 

is unpacked for relevant information. Address checking for existence is performed. If the 

flag CLEAR, passed as an argument, is non-zero, the overlay buffer is zeroed. Subsequently, 

the overlay module is unpacked and loaded into the overlay buffer. The return address from 

the argument list is determined and control is passed to the calling program. 

TRAP 064-Extended Address Bit Set-UJ 

This resident trap routine is used to convert the 16-bit virtual ‘address associated with a 

DOS .TRAN block into an 18-bit physical address, necessary for DMA device set-up on control. 

Word 2 of the .TRAN block must contain the user-space virtual address of the DMA I/O buffer. 

Upon return from this trap routine, word 2 will reflect the low-order 16-bits of the physical 

address corresponding to the virtual address passed by the user. Bits 4 and 5 of word 3 of the 

.TRAN block reflect bits 16 and 17 of the physical buffer address. An error return code is 

made if the .TRAN block address or the virtual address specified in the block is not accessible. 
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TRAP @97--Virtual-to-Physicalnversion Routine 

This resident trap routine performs the same function as TRAP 094 (i.e., conversion of a 

virtual user-space address into an l&bit physical address), only this routine provides much 

more detailed information about the reference memory location. Since interpretation of a 

virtual address by the KTllC as either an I-space or a D-space address is made in the con- 

text of each particular instruction, this trap routine returns the 18-bit physical addresses 

associated with both the I-space and D-space virtual address. Other information whichis re- 

turned are the contents of the PAR/PDR sets (both I and D-space registers) associated with 

the particular virtual address. 

TRAP 010 -Physical to Virtual Address Conversion Routine 

This non-resident trap routine accepts an 18-bit physical address and returns allvirtual 

addresses which reference this physical memory location. Since it is possible that several or 

all I-space and/or D-space PAR/PDR sets could reference the same memory location, up to 

16 different virtual addresses might be returned to the calling program. 

TRAP (Ill -MIDOS Exit/Restart Routine 

This resident trap routine is called to generate a DOS/BATCH system error. An error 

code (16 bits) is passed on the stack to this trap routine. This routine then issues a call to 

the EDP (error diagnostic print) package within DOS/BATCH. An error message of the form 

‘A261 xxxxxx’ is issued. At this point the user may restart MIDOS using the $CO command to 

DOS/BATCH or kill DOS using the SKILL command. It is not possible to restart the user- 

program from this point. 

TRAP 6 12 -Menu Display File Initializer 

This is a non-resident trap routine which is used in conjunction with TRAP 013 to provide 

a simple mechanism for interactive menu display. A menu file, containing up to 50 separate 

display menus and created offline via a system program named CREDF, is attached by calling 

this trap routine. The system common area is set up to reflect the number of menus in the 

display file and the disk location (block address and word displacement) of each menu. Fatal 

system errors associated with this routine are caused by a non-existent display file, a display 

file format error, or a disk read error. 

TRAP 813-Menu Display Routine 

This non-resident trap routine attempts to display a menu, in conjunction with the MIDOS 

system common information which has been set up by a prior call to TRAP 012 made by the 

user program. The menu number requested is checked for validity and, if available, is ob- 

tained from disk and passed to the RAMTEK display system via a .TRAN call to the device 

driver. Associated with each menu, there may be a response table, i.e., a table which defines 

areas associated with menu-interactive decisions made by the user. This information (if it 

exists) is stored in the MIDOS system COMMON area for use by various system subroutines. 

Fatal system errors associated with this routine are caused when no display file has been 

94 



previously attached via TRAP 012, or by a non-existent or out-of-range menu number, a display 

file format error (more than 128 entries in response table), or DMA transfer errors either 

from disk or to the RAMTEK display system. 

TRAP OlQ-Scanline and Pixel Number Calculation Routine ~- 
This non-resident trap routine calculates the line and pixel number for a given pixel dis- 

played on the screen of the RAMTEK display system. In the course of image generation by the 

application program CRTDIS, the system COMMON area is updated to reflect the line and pixel 

limits currently displayed on the color monitor. It is possible to calculate the scan line and 

pixel number for a physical RAMTEK screen coordinate based on the magnification factor in 

both axes. Error return codes to the calling program are caused by a non-existent display 

image or a screen pixel selection for which no scanner pixel exists. No fatal system errors 

are possible. 

3.3 APPLICATION PROGRAMS 

3.3.1 DATA BASE CONTROL PROGRAM (IMAMAN) 

Image Manipulation (IMAMAN) provides the user with the means to move multispectral 

images to or from the MIDAS DISK system (see Table 7). The transfers can be made to or 

from the following media: Computer Compatible Tape (CCT),High Density Digital Tape (HDT), 

and Analog Tape. IMAMAN performs seven functions. 

(1) Load an image from a media to MIDAS 

(2) UNLOAD an image from MIDAS to some media 

(3) LIST the directory on the MIDAS disk system 

(4) delete an image from the MIDAS disk system 

(5) LIST a report of the work done on a particular file 

(6) rename a file and its associated files 

(7) exit IMAMAN and return to user applications menu 

The load function starts by allowing a selection of the type of device to be used for input. 

Due to no HDT at this time, the only possible choice is CCT input. When CCT is selected, the 

logical unit number of the drive on which the CCT is mounted is entered, with the format of 
c 

the tape and the file number desired. 

The next step is to assign a nine-character name to the file which is to be generated. The 

first character defines which of the two MIDAS disk drives will hold the file. 

Then the choice is made as to what part of the scene is to be loaded onto the disk. Scan 

lines can be selected starting at any line-number, and go to any line number with any integer 

increment. The points on all selected scan line are selected in the same manner. 

Channel selection is the next step. Each channel on the input medium can be selected or 

not for inclusion in the output file. 
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TABLE 7. OUTLINE OF FUNCTIONS PERFORMED BY IMAMAN 

1. LOAD 

A. 

2 
D. 
E. 
F. 
G. 
H. 
I. 

J; 

Device Selection 

(1) CCT 

(a) UNIT # 
(b) FORMAT 
(c) FILE # 

(2) HDT-NOT IMPLEMENTED 
(3) ANALOG-NOT IMPLEMENTED 

IMAGE NAME FOR OUTPUT 
SCENE SELECTION 
CHANNEL SELECTION 
SCANNER WHICH GENERATED DATA 
UPDATE TITLE RECORD 
UPDATE SITE RECORD 
UPDATE CHANNEL RECORD 
OPTIONS 

(1) PREVIEWING -NOT IMPLEMENTED 
(2) STATISTICS-NOT IMPLEMENTED 
(3) START LOADING PROCESS 

PUT DATA IN FILE 

2. UNLOAD-NOT IMPLEMENTED 

3. DIRECTORY 

4. DELETE A FILE 

5. REPORT -NOT IMPLEMENTED 

6. RENAME -NOT IMPLEMENTED 

7. EXIT 
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The last piece of new information needed is the type of scanner which generated the data 

about to be read in. This allows the software to correct for the direction of scan when images 

are generated. This also makes some default information available. 

The next three sections of input to the program allow the operator to change the informa- 

tion about the file. This includes the title, site, and channel information. The information can 

be changed or left unmodified. 

At this point, the data is read from the input device and written on the MIDAS disk drives. 

The unload function will simply take a disk file and copy that file unto the selected output 

device. 

The directory function gives the operator a means by which he can list the directory of 

the two MIDAS disk drives. 

The delete function allows for the removal fo a file from the disk system. 

The report and rename functions have not been implemented at this time. 

The EXIT function allows the operator to return to the USER-APPLICATIONS program to 

select a different application. 

3.3.2 DATA DISPLAY PROGRAM (DISPLA) 
The data display program (DISPLA) provides the user with the means to generate color or 

grayscale images either on the 63.5 cm CRT screen or on the hardcopy inkjet plotter (see 

.Table 8). All data input is from the disk-database information system. The current algorithm, 

which is implemented for both CRT and IJP output, is a manual-level-setting method, which 

very simply assigns a particular color to a given set of input data levels. This algorithm was 

the simplest implementation which provided all of the necessary display capabilities initially 

required. Additional algorithms to provide multichannel false-color mapping and other sim- 

ilar, more complex color image-mapping algorithms will be implemented and incorporated 

into this program after user feedback provides information on the types of display functions 

necessary for more complicated MIDAS processing tasks. 

The DISPLA program’ initially asks the user for the type of display to be generated, to 

which the user must respond with either the color CRT or the IJP as the output device. Once 

the device has been selected, a multispectral data file must be specified via the standard nine- 

character filename. If this file exists, the program inquires about the number of ChaMelS and 

mode of the display. Since only the single-channel, manual mode is implemented, only these 

responses will be treated as valid. Next, the program will request the type of display to be 

generated: color or grayscale. Only these two responses are considered valid. 

Next, the program will interrogate the user for the magnification factors to be used in 

displaying the data. Two separate positive integer values must be entered, the width 

97 



TABLE 8. OUTLINE OF FUNCTIONS PERFORMED BY DATA DISPLAY 

1. Select output device 
A. Color 63.5 cm CRT 
B. Inkjet plotter hardcopy product 

2. Select input file for display 

A. If file exists, go to 3 
B. Goto 

3. Select display mode 

A. Select display algorithm 
(Note: only manual level-setting implemented) 

B. Select number of ChaMelS 
(Note: only single-channel implemented) 

C. Select color scheme 
1. Color (default) 
2. Grayscale 

4. Select pixel and scan line magnification factors 
(Note: default for both values is 1) 

5. Select scene descriptor parameters 

A. Enter channel number 
B. Enter rectangular scene descriptor array 

1. Start scan line number 
2. Ending scan line number 
3. Scan line increment 
4. Starting pixel number 
5. Ending pixel number 
6. Pixel increment 

6. Enter levels associated with each color 

7. Enter default color value 

8. Generate display 

A. Read scan line from disk 
B. Translate and magnify data into output data line 
C. Transfer data to display device 
D. Update common area image descriptor array, only if CRT is 

output device 

9. Go to 1 
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magnification (or pixel duplication factor) and the length magnification (or line duplication 

factor). The default value for each of these is 1, producing an unmagnified image on the imag- 

ing device. 

Following this, the program will request the necessary information concerning the data 

to be used for input to the image-generation package. The channel to be used must be entered 

by the user. No default condition exists for this response. Once the existence of this channel 

is verified, the rectangular scene to be displayed must be entered by. the user. Six integral 

values must be entered describing the following parameters: 

(1) starting scan line number (default: first line of file) 

(2) ending scan line number (default: scan line number which will maximize size of the 

image on the selected output device) 

(3) scan line increment (default: file scan line increment value) 

(4) starting pixel number (default: starting pixel number of file) 

(5) ending pixel number (default: pixel number which will maximize size of the image on 

the selected output device) 

(6) the pixel increment (default: file pixel increment value) 

Since the two imaging devices have upper bounds to the size of the image that they can display, 

an error will be generated if the requested display is too large. The user will then have to 

enter a new scene descriptor array compatible with the physical limitations of the display de- 

vices. The RAMTEK is capable of generating images which are 510 pixels wide and an un- 

limited number of lines in length (note that any image with more than 512 lines will have some 

portion of the data scrolled off the screen). The inkjet plotter (IJP) is capable of generating 

images on 21.6 X 27.9 cm paper which are 864 pixels wide and 1314 scan lines long. 

After the plot extent has been described, the assignment of colors to input data levels 

must be specified. A color is selected and the minimum and maximum range for the color is 

entered. This process continues until all levels have been specified. Finally, a default color 

must be specified to encompass those input data levels not assigned to a specific color. 

Upon completion of this data entry phase, the color display is generated. The common 

area is updated after every scan line to reflect the actual limits of the currently displayed 

image. This information can be used by other applications programs in interacting with the 

currently-displayed image. 

3.3.3 FIELD DEFINITION AND DESCRIPTION (FLDMAN) 

Field manipulation (FLDMAN) provides the user with the means to generate polygonal 

training and test fields. The training field then can be used for signature extraction, and the, 

test field can be used for post-classification analysis. There are three means by which the 

field definitions can be made. 
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(1) Draw the .polygon on the color monitor. 

(2) Enter the vertices from the keyboard., 

(3) Read a 7-track magnetic tape with BCD card images of vertices; 

Drawing on the color monitor is done by selecting the first vertex with the cursor and 

hitting the “ENTER” button on trackball. The same is done for the other vertices. The end of 

the field is signaled by hitting “ENTER” without moving the cursor. The field is checked for 

errors and an inter-scan-line and inter-pixel increment are entered. Next the field name, 

class and type are put in. The name is arbitrary, the class lumps fields together,and the type 

is either test or training. 

Entering the vertices from the keyboard is done by typing line and point number pairs for 

each vertex. The end of the field is signaled by typing a carriage return with no pair of num- 

bers preceding it. Then the increments, field name and class, and the type are entered as 

described above. 

When reading fields from magnetic tape, the same information is read from the tape in 

the same order as in the other two methods until the end-of-file is found. The format of the 

card images is shown in Table 9. 

3.4 STATISTICAL PROGRAMS 

3.4. I SIGNATURE MANIPULATION (SIGMAN) 

Signature manipulation (SIGMAN) provides the user with the means to obtain signatures 

for use with the classification hardware. SIGMAN uses the fields generated by the field manip- 

ulation package. This program combines and scales signatures as well as extracting them. 

When extracting signatures, the user selects from the current field file all the field names 

and field classes which he wishes to use in calculating the signature. Next he selects which 

channels are to be used in the calculations, and specifies the number of standard deviations 

from the mean data value permitted for each channel. This criterion is used to exclude pixels 

from the calculations. With this information, the signatures are calculated and the results 

displayed. 

If the user accepts the signature it is given a name and is written into a file. If the user 

rejects the signature several alternate choices for calculating a new signature are available:, 

(1) a new set of fields, (2) a new set of channels with the same fields, (3) different editing lim- 

its with the same channels and fields. 

When combining signatures, the user must specify the weight to be given to each of the 

signatures. The signatures used must all have the same number of spectral channels. The 

combined signature is then calculated in the following way: 

m m z= c Wi$ Y== wi7 
c 

i=l i=l 
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TABLE 9. FORMAT OF CARDS FOR INPUT TO FIELD MANIPULATION 

Vertices Cards 

Column No. 

::;fl 

11-15 
16-29 

21-25 
26-34 

31-35 
36-44 

41-45 
46-50 

51-55 
56-6$ 

61-65 
66-7$ 

71-79 

86 

Information Cards 

Column No. 

l-5 

6- ld 

11-19 

21-29 

31 

71-79 

88 

Content Card 1 Card 2 Card 3 Card 4 ~ - - - 
line # 

I point # 

line # point # 1 

line # 
point > 

line # 
point B 

line # 
> point # 

vertex 1 8 

vertex 2 9 

vertex 3 10 

vertex 4 11 

vertex 5 12 

vertex 6 13 

16 23 

20 

22 

line # 
1 point # 

field # 

vertex 7 14 21 

(Use same # on all cards of each set) 

1 through 4 to indicate card number for the appropriate 
set of vertices. 

Content 

Inter-scan-line increment 

Inter-pixel increment 

Field Name 

Field Type 

Category: T = Test 

G = Training 

Field number as for vertices card 

” 5” 
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m - -. 
and new COV(X,Y)= cWi[COVi(X,Y) + xiyi] - z.‘=y 

irl. 

where fi = means for signature i; channel X z 7 ‘mean for combined signature; channel X 

Fi = means for signature i; channel Y g = mean for combined signature; channel Y 

Wi = weight for signature i m = number of signatures being combined 

After the signatures are comscaled, the user provides a nine-character name for the new com- 

scaled signatures to be stored on disk. This name is later referenced by the RAM load package 

when setting up MIDAS. 

The basic mathematical calculations are performed by a subroutine STAT. 

3.4.2 SUBROUTINE STAT 

If editing of the data base is requested (EDII< l), the upper and lower bounds for data values 

in each channel are chosen so that no more than one out of a thousand are rejected. 

These editing bounds are based on the median (as an estimate of the mean) and the quartile 

value (as an estimate of the standard deviation). The actual standard deviation used for each 

channel appears in QDEV, and the upper and lower editing limits for each channel appear in 

EDHI and EDLO respectively. After the editing procedure, all the data points that were within 

the editing limits in all Channels are the first NSS-NREJT data values in each channel. The 

remaining data values in each channel were rejected,because at least one of the corresponding 

data values in another channel was not within the editing limits. If fewer than two points are 

considered good after the editing procedure, ISW is set to 2 and the subrouting returns. If 

there are two or more good points after the editing procedure, the mean and median are de- 

termined for each channel. Then the covariance matrix is calculated using the following equa- 

tion: 

DATA(K,I)*DATA(L,I) - 

I 

where COV = floating point, double-precision covariance matrix 

NESS = the integer number of good data points 

DATA = the integer array of data values 

MEAN = the floating point, single-precision vector of the mean for each channel 

The standard deviation for each channel is calculated by extracting the square root of the 

diagonal elements of the covariance matrix. The correlation matrix is determined next 

through use of the following equation: 

if STD(K)*STD(L) = 0, COR(K,L) = 1. 
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where COR = correlation matrix; the diagonal elements will be all l’s and all off-diagonal 

elements are between 0 and 1 

COV = covariance matrix 

STD = vector of the standard deviation for each channel 

If the user has requested the eigenvectors and eigenvalues for the covariance matrix 

(ISW f -J), these are calculated and the subroutine returns control to the calling program. 

The floating point numbers which are generated by the STAT subroutine must be converted 

into 16-bit RAM constants suitable for loading into the MIDAS Pre-processor and Classifier. 

The various operations are described below for each parameter. 

Means 

The means used by MIDAS must be negated and scaled so that no more than eight bits in 

2’s complement notation are used. That is, the high-order bit (bit 7) is used as a sign. There- 

fore, the smallest number possible is: 

1000OOOObase 2 = -12810 

and the largest number possible is: 

01111111 base 2 = +12710 

The numbers coming from the signature file are in offset binary notation with the smallest 

integer number represented by 

00000000 base 2 = Olo 

and the largest integer number represented by 

11111111 base 2 = 25510 

The incoming double-precision, floating-point mean is negated. The constant 12810 is then 

added to the result to convert it to 2’s complement notation. This number is converted to in- 

teger and put in the output buffer. If an input mean is 2256, an error message is printed. If 

the data to be processed is positive magnitude, the conversion of the means to 2’s complement 

is omitted. 

Variances 

The standard deviation for each channel is determined by calculating the square roots of 

the diagonal elements of the covariance matrix. The standard deviation is inverted, scaled, and 

converted to integer. MIDAS presently has only 12 bits available for this number. Therefore, 

to obtain as many significant bits as possible, the standard deviations are subjected to the fol- 

lowing restriction: 

l<a 

With this restriction, MAX [l/u] = 1.0 - 2-12. Jn binary this is: 

0.111111111111 I 103 



- II 

This provides the maximum number of significant bits with no bits constantly 0 or constantly 1. 

If a standard deviation is less than 1, the standard deviation is altered to make it just enough : 

greater than 1 so that 

- = 1.0 - 2-12 1 
u 

Consequently, the processing procedure is as follows: 

1. A diagonal element of the covariance matrix is found, and its square root is calculated. 

If no more, quit processing 

2. If the result is greater than 1, go to step 3. Otherwise, multiply the diagonal element 

by 

I1 - 2!12)*J2 

Then multiply the column of the upper diagonal covariance matrix (except the diagonal 

element itself) by 

1 

(1 - 2-l2)*cJ 

Then go back to step 1 and select the same diagonal element again. If c = 0, u is set 

equal to 
1 - i-12 

3. Multiply this number by 2 12 

1*2 12 
u 

4. Convert the result to integer and save it. 

5. Go to step 1. 

RAM Coefficients 

To understand the reasons behind all the following mathematical manipulations, see the 

mathematical analysis in Section 2. The processing goes as follows. 

1. Calculate the correlation matrix from the covariance matrix. 

2. Transpose the correlation matrix. This matrix must be transposed because the next 

routine to use it was written in FORTRAN and expects all arrays to be stored in col- 

umn-by-column instead of row-by-row form. 

3. Calculate the eigenvalues and eigenvectors using the FORTRAN subroutine EIGEN. 

4. Transpose the FORTRAN-form eigenvectors’ matrix. 

5. Treat the eigenvalues as the diagonal element of a square matrix with all off-diagonal 

elements set to zero. 

6. Calculate the square root of each diagonal element and invert it, 
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‘7. Multiply this transformed matrix by the eigenvectors’ matrix and store the results 

back in the eigenvectors’ matrix. 

8. Find the largest element in absolute value in the new matrix, negate it, divide every 

element of the new matrix by it, and save the constant. 

9. Multiply the new matrix by 128 and convert it to integer. The low-order 8 bits are the 

only significant bits that MIDAS can handle. 

10. Take the.constant saved previously, square it, and store it in the output buffer following 

the coefficient matrix (stored in row-by-row form). 

Determinant 

This program does no scaling on the determinant. The determinant is.found for the cov- 

ariance matrix by performing a Gauss-Jordan inversion with partial pivotal elimination. The 

double-precision, floating point natural logarithm is calculated and stored in the output buffer. 

3.5 HARDWARE CONTROL PROGRAM (CLASFY) 

The hardware control program (CLASFY) provides the user with the mechanism to set up 

the MIDAS Preprocessor/Classifier hardware,and to generate the subsequent data file using 

this hardware (see Table 10). The set -up of the hardware determines the algorithm which is 

used to generate the new data file. The current implementation of this program allows the 

following algorithmic selections: (1) quadratic classification of either four channels with up 

to 16 classification types or eight ChaMelS with up to eight classification types, or (2) ratioing 

of two Channels with the appropriate scaling necessary for retention of data significance.. 

The CLASFY program initially asks the user for any new set-up to be performed on the 

multiplicative-additive scan angle correction function hardware. The options available here 

are: (1) load the hardware with a user-selected function generated with the statistics package 

(not yet implemented), (2) load the hardware such that no correction is performed, or (3) per- 

form no action whatsoever, retaining the previous configuration. The program will perform 

the desired action, and indicate in the COMMON storage area that the appropriate action has 

been taken. 

Next the user must select the type of output desired, either classification or ratioed data 

generation. The classification algorithm currently implemented is a single-pass scheme with 

a maximum number of signature classes of either 8 or 16, dependent on the number of input 

channels; however, future implementations will include a multipass classification scheme with 

a much larger number of signature classes (possibly as high as 255) available. The ratio op- 

eration, as currently implemented, allows for generation of only one ratio between two input 

channels, but a multi-pass multi-ratio scheme may be implemented in the future. 

If the classification mode is selected, the user must select the channel subset to be used 

in this classification pass. Once an acceptable channel subset has been selected, the signature 

file and subset of signatures (if any) must be selected. If the number of Channels in the selected 
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TABLE 10. OUTLINE OF THE CLASSIFICATION FUNCTIONS 

1. Load Preprocessor with appropriate correction functions 

A. No function (wire set-up) 
B. Function (l-dimensional) load 

1. Read correction function from disk 
2. Indicate correction function load in common area 

2. Select type of output desired 

A. Classification 
1. Select number of channels and channel subset 

(or default to all in signature set) 
2. Select signature set (and subset of signatures if any) 
3. Load signatures, into classifier and set-up appro- 

priate L.C. and ratio paths, storing Preprocessor 
description in common area 

4. Select input filename (or default to current) and 
output filename 

5. Specify rectangular scene to be classified 
(a) If enough disk space, go to 2.A.6 
(b) Allow user to delete unwanted disk.files and 

go to 2.A.4 
6. Write output file title with classification description 
7. Perform classification, tallying counts 
8. Output tally counts, and go to 1 

B. Ratio 
1. Select input and output filenames 
2. Specify rectangular scene to be ratioed 

(a) If enough disk space, go to 2.B.3 
(b) Allow user to delete unwanted disk files and 

go to 2.B.1 
3. Select numerator and denominator channels and 

respective multiplicative weighting factors 
4. Load preprocessor as described 
5. Write output file title w. ratio description 
6. Perform ratioing, writing output on disk 
7. Go to 1 

106 



subset is four or less, up to 16 different signatures may be used; however, if the number of 

ChaMelS is between five and eight, only eight signatures may be used. The program will then 

load the Preprocessor linear combination and ratio hardware in such a manner that no linear 

combinations or ratios are formed, and then load the selected signatures into the Classifier 

hardware. Next the user must specify an input and an output filename. Then a scene speci- 

fication for the rectangular area to be classified must be made. If enough disk space is avail- 

able to hold the output classification information, a file of sufficient size will be created; other- 

wise, a smaller rectangular scene specification must be re-entered. The actual classification 

operation then begins and the classification results are stored on the disk. A running tally of 

the classification results for each class is kept and output at the end of the classification oper- 

ation. 

If the ratioing mode is selected, the user is asked to specify input and output filenames 

and a rectangular scene specification. If not enough disk space is available for the requested 

scene, a smaller rectangular scene specification must be made. Next the ChaMd num.bers 

for the numerator (N) and the denominator (D) channels must be specified. A scaling factor K, 

where -32 < K < +31, must also be specified. This scaling factor affects the ratio R which is 

formed such that 

After these parameters have been specified, the ratioing operation will be performed and an 

output file generated. 

3.6 POST-CLASSIFICATION ANALYSIS (PANALY) 

The post-classification data analysis program (PANALY) provides the user with a mechan- 

ism for elementary statistical analyses of classification results generated by processing data 

through the MIDAS classifier hardware (see Table 11). Calculation of class proportions and 

classification accuracy matrices upon selected subsets of a scene are the two primary functions. 

Upon entry to this program, the user selects the data file to be analyzed. If this file is not 

a classification file as generated by the classification option of the program CLASFY, an exlst- 

ing filename of this type must be re-entered. The user may then select the subset of the scene 

to be analyzed by choosing those fields to be used from the current field definition list as form- 

ulated by the program FLDMAN. The four options available for field selection are: (1) enter 

up to 25 field names and up to 25 field classes to be used, (2) use all fields designated exclus- ( 

ively as “test fieids” at time of creation in FLDMAN, (3) use all fields designated exclusively 

as “training fields” at time of creation in ‘FLDMAN, or (4) use all test and training fields for 

analysis. Any or all of these options may be used for a given analysis task. 

Next the user may optionally enter a scanner resolution element size in either hectares 

or acres. If this value is not entered, the scanner-type designation found in the data file title 

will provide the information for deciding the pixel ground area. 
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TABLE 11. OUTLINE OF THE POST-CLASSIFICATION ANALYSIS FUNCTIONS 

1. Select input disk filename 

A. If not classification file, go to 1 

2. Select fields to be used in analysis from one of the following modes 

A. Enter up to 25 field names and up to 25 field classes for analysis 
B. Use all test fields 
C. Use all training fields 
D. Use all training and test fields 

3. Select scanner resolution element size (default taken from data file title) 

4. Select type of analysis output 

A. Tally individual fields and/or 
B. Tally all fields together and/or 
C. Form confusion matrix based on all fields 

5. Perform analysis processing and go to 1 
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Next the user must select the type of output to be generated on the line printer. Any or 

all of the following options may be selected: (1) tally output (or pixel count and ground area 

covered for each class) for each field separately, (2) tally output for all fields taken together, 

and/or (3) form classification’accuracy, or confusion matrix based on all fields. This last 

option consists of an N X N matrix which shows the number (or proportion) of pixels of class 

At (as designated at creation time of each field used) that were actually classified as class A., 
J 

where both i,j = 1 throughN, for 0 < N 5 16. 

Once these parameters have been entered by the user, the field definition list, stored on 

the RK05 system disk, is searched for the vertices of all fields included in the processing sub- 

set. The data pixels designated by these vertices are obtained from bulk disk storage, and the 

requested output information is computed and displayed on the line printer. 
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APPENDIX 

THE USE OF APL IN HARDWARE SIMULATION 

A.1 THE APL CLASSIFIEH SIMULATION 

An APL simulation was written of the MIDAS Classifier in order to validate and document 

the hardware design. 

We can conceptually divide the pipeline into stages where each stage has the following 

characteristics. A stage has a memory which maintains the result of a computation (for 1 

clock) while the next computation proceeds. While in the true MIDAS Classifier these memory 

components are edge-triggered devices, in our APL simulation they appear as master-slave 

devices. Thus, the output of stage 1 is computed and placed in a register called STlM. At 

the end of the clock pulse, the contents of STlM are transferred to STlS (its slave) and stage 

1 can recompute STlM. While STlM is being recomputed, STlS is available for use by stage 2. 

The nine classifier stages from the mean computation to exponent selection were simulated. 

The major objective (consistent with the goals stated above) was to correctly compute the con- 

tents of all memory elements and,thus,the state of the machine at each clock. Hence, the input 

and output of each stage should be identical with that of the hardware. Further, all other mem- 

ory elements in the simulation (accumulators, overflow flip-flops, etc.) should maintain the 

exact state of the hardware. Within a stage, however, the simulation does not exactly reflect 

all processor activity. No attempt is made to preciseiy simulate all logic. 

Consider stage 2 which multiplies incoming data by a variance coefficient. In hardware, 

this 8-bit by la-bit multiply was performed by an array of multiplier chips. While it might be 

elegant to simulate these chips and their interconnections, the resultant multiplier simulation 

would be very complex and very slow. If this type of detailed approach had been used through 

the simulation, the resultant APL program would have been so slow that it would have been 

almost useless as a system debugging aid. The 8-bit by la-bit multiply was actually simulated 

by converting both input bit strings to integers, performing an integer multiply, and converting 

back to a bit string. The result was identical to the result produced by the array of chips while 

the approach was radically different. It should be clear that, with this level of simulation, the 

program would be very useful in tracking down faulty multiply cards but useless for finding 

the error within the card. 

The program listing is given on pages 115-122 and illustrated in Figure A-l. The com- 

ments should make the correspondence between stages and hardware components obvious. 

Note that after all nine stages have completed their operation, the end of a clock is simulated 

by transferring all master memory elements to their corresponding slaves and jumping to the 

beginning of the program. It should also be pointed out that this program (for reasons of ef- 

ficiency) simulates only one of four identical pipes. Note that when a memory is specified in 

the first six stages, it is indexed by its pipe number. 
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Stage 1 5 2 4 

I Clear 
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I Clear 
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AC’ CPC 

f 
8 

Channel 0,8 
I 

Channel 15 

1 c of 
16 

L 
L 

I 

9 
OVF 

. 
12 - 
t 
8 BUS 

+ 

-I 

+ 
I - 

. . 
12 

OVF 
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FIGURE A-l. APL MIDAS SIMULATION (Continued) 
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FIGURE A-l. APL MIDAS SIMULATION (Concluded) 
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In our simulation, the pipe number specified is always pipe zero. One could trivially 

change this program to do a full four-pipe simulation by indexing through the four pipes in 

sequence. 

The first six stages of the pipeline (up through square accumulate) were actually simulated 

using the program described above. The simulation results were found to be exactly correct 

when compared to results obtained from the diagnostic system of the MIDAS with identical in- 

puts. In fact, the simulation helped detect a small hardware failure in a portion of the Classi- 

fier thought to be operational. We feel that this simulation technique could be of great value 

in testing and maintaining the Classifier. 
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V MAIN 
Cl1 
c21 

1:: 
CSI 
[61 
c71 
CEI 
c91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
Cl61 
Cl71 
Cl91 
Cl91 
c201 
c211 
c221 
c231 
[241 
[251 
c261 
C271 
C281 
c291 
c301 
c311 
[321 
c331 
c341 
c351 
[361 
r371 
C381 
c391 
c401 
c411 
C421 
II431 
c441 
c451 
c461 
c471 
C481 
c491 
CSOI 
c511 
c521 
c531 
c541 
c551 
C561 
c571 
C581 
c591 
[601 
[611 
[621 
[631 
[641 
C651 

nSTAGE 1 
nMEAl STAGE 
nTRI.9 STAGE IS REPLICATED 4 TIMES TO DO 4 CLASSIFICATIONS 
REACH COPY BAS ITS OWN 16x8 MEMORY 
nMURAM+4 16 8~0 
nIRAM IS USED TO SELECT CHANNEL INPUTS 
nIRAM+l6 4pO 

~ATAINcCRANRELC((YxlCY)+21CPCC2 T 31);3 
+(-A/CPC) /N4 
ICY+ICY+ 1 
+(ICY<4)/N4 
ICY+0 
N4: ICY 
STlMCO;l+DATAIN ADD8 MURAMCO;PdPC; 1 
OVSRCO;O]+OVF 
A 
ASTAGE 2 
n VARIANCE STAGE 
nREPLICATED 4 TIMES 
REACH HAS ITS OWN 16x12 ME?4ORY 
nVARRAM+4 16 12~0 
ST2MCO;l+STlSCO;lMPYET YARRAMCO;~ICPC;] 
OVSRCO;ll+OVSRCO;llvOVF 
n 
nSTAGE 3 
aMATRIX MULTIPLICATION 
aTHERE ARE 32 SCALAR 6x8 MULTIPLIERS 
nIT TAKES 4,8,OR 16 T-STEPS TO FORM AN INNER PRODUCT 
nEACH MULTIPLIER HAS ITS OWN 16x8 RA:4 
nCORAM+4 8 16 8~0 
nTHERE ARE EIGHT OUTPUTS FOR EACH CLASSIFICATION 
nST324+4 8 lop0 
AI STEPS THROUGH THE 0 CONCURRENT I'~ULTIPLICATIONS 
I+0 
MPLP:ST3M[O;I;]+ST2S[O;],'4PYEE CORAMCo;I;21CPC;] 
ST30VM[O ;Il+OVF 
1+1+ 1 
+(Is7)/MPLP 
&STAGE 4 IS THE ADDITION LOOP FOR THE INNER PRODUCT. 
mMMACM+4 6 12~0 
ATHE INNER PRODUCT IS ACCUMULATED IN THE WMAC. 
nMMACS+4 6 12~0 
I+0 
MPACLP:MMACIY[O;I;]+MMACS~O;I;IADD~~ ST3SCo;I;] 
I+It 1 
+(Is7)/MPACLP 
R LOAD THE I'4ULTIPLY OUTPUT. 
+(-MTXMXI)/(NLMO) 
I+0 
LMO:ST4WCO;I;l+iY;CS[O;I;lADDl2 ST3SCO;I;l 
I+It 1 
+(Is7)/LMO 
MMA CM+MMA CS+CLEAR MMA C1'4 
nSTAGE 5. 
nSTAGE 5 SQUARES THE Y'S 
aTHERE ARE 4 SUCH MULTIPLIERS 
nSTSM+4 12~0 
NLMO:SQIN+ST4S[O;MTXOP;l 
OVF+-((h/SQINCO T 31)~~(v/S.?INCO T 31)) 
SQ~N+SQINCOl,SQIN[4 T 111.0 
STSMCO; l+SQIN IYPYTT SQIN 
OVSRCO;lll+OVSRCO;11l~OVF 
&STAGE 6. 
rrSQACM+ 4 16 p0 
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C661 
c671 
C681 
[691 
c701 
c711 
C721 
c731 
c741 
c751 
[761 
c771 
[781 
c791 
[801 
[811 
c821 
1831 
[841 
[851 
C861 
c871 
C881 
c891 
II901 
II911 
1921 
c931 
c941 
L-951 
c961 
c971 
[981 
c991 

SQAC~Y[O;l+SQACS[O;lSQAC~O 0 0 .STSS[O;l,O) 
nD0 WE LOAD THE OUTPUT? 
+(-SAMXI)/(LS0+4) 
LSO:SQBS+SQACSCO;1SQAC(O 0 0 .STSSCO;1.0) 
ST6MCO;l+SQSSCO T 111 
SQACS+SQACM+CLEAR SQAC‘Y 
ASTAGE 7 
nST7th14 p0 
&STAGE 7 MULTIPLIES BY THE CONSTANT X 
MPYKOUT+ST6S(SAMXOP; )MPY1210 RRAtYCPMPC;l 
ST7M+MPYKOUTC2 T 151 
ni4PY1210 IS A 12 BY 10 MULTIPLIER. 
DETECT+v/(OVLS[SAMXOP;O T ~~,(ECHANAOVLS[SA.YXOP;~ T 71)) 
ST~OV,Y+ST~OVSVDETECT 
RSTAGS 8 
nSTAGE 8 SUBTRACTS THE LOG TER:Y AND COHPUTES THE CHI BIT 
ST8iY+(O 0 .ST7S)ADDl6(O,LRAY~(21cpC);I. 0 0 0) 
STBOVI'~+ST~OVS 
STBCHItY+CHIRAM CHICO.YP ST7S 
nST8:M+l6 p 0 
nSTACE 9 
STAGE 9 XEEPS THE SiYALLEST EXPONENT 
nALONG WITH ITS ASSOCIATED CLASS NU.IBER. 
nST9M+16 p 0 
ABESTEXP+lG p 0 
CrYP+STaS EXPCOMP BESTEXPS 
LOAD+CMPAST~OVSAST~CHIS 
CLR+(((~~CPC)=/~)A-ECHAN)V(((~~CPC)=~)AECHAN) 
BESTEXP:4+(-LOADAEESTEXPS)V(LOADAST~S) 
CLASSNOM+(ECHANh(O,CPCCO T 21))v(LOADhCLASSNO) 
+(-CLR)/NCLR 
AWE :4UST LOAD THE OUTPUT LATCH AND CLEAR 
STgM+BESTEXPM 
ST9CNM+CLASSNOS 

Cl001 CLASSNOtY+CLASSNOS+4pO 
Cl011 BESTEXPM+BESTEXPS+l6pO 
Cl021 lsMASTER TO SLAVE TRANSFERS. 
Cl031 SHOV 
Cl041 STlS+STliY 
Cl051 ST2S+ST2M 
cl061 ST3S+ST3M 
Cl071 ST4S+ST4M 
cl081 ST5S+ST5M 
C 1091 SQACS+SQACM 
Cl101 ST6S+ST6M 
Cl111 ST7S+ST7M 
Cl121 ST70VS+ST70VM 
Cl131 ST8S+STBM 
cl141 STBOVS+ST80VM 
Cl151 ST9S+ST9M 
Cl161 BESTEXPS+BESTEXPM 
Cl171 CLASSNOS+CLASSNOM 
Cl181 ST8CHIS+ST8CHIM 
Cl191 OVLS+OVLM 
C 120 1 MiYACS+MMACY 
Cl211 CPC+INC CPC 
Cl221 DISPLAY 
cl231 +l 

v 
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VABSCOI 
V Z+ABS X;LEN 

Cl1 LEN+pX 
121 +(XC0I)/NEG 

::: 
z421x 
-CO 

c51 NEG:Z+2lCOMP X 
C63 SIN+-SIN 

V 

VADDl2COl 
V Z+X ADD12 Y;Xl;Yl;Zl 

Cl1 x1421x 
c23 Yl+2l(YCol.Yto3,Y) 
c31 Z1+X1+Y1 

'CSI Z+(12p2)TZl 
c51 OVF+(XCO~AYCO~A-ZCO~~~((-X~O~~~(-Y~O~~~Z~O~~ 

V 

VADD8COl 
V Z+X ADD8 Y;Xl;Yl;Zl 

L-11 x1421x 
c21 Yl42LY 
c31 Zl+X1+Y1 
r43 Z+(8p2 )TZl 
c51 OVF+(XCO~AYCO~A(-ZCO~~~V((-XCO~~A(-YCO~~AZCO~~ 

V 

VCHICOMPCO] 
V Z+X CHICOMP Y;Xl;Yl 

Cl1 x1421x 
c21 Y142lY 
c31 Z+X>Y 

V 

VCLEARC01 
v Z+CLEAR X 

Cl3 Z+(PX)PO 
V 

vCOMP[cl1 
V Z+COMP X 

Cl1 Z+INC(-X) 
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V DISPLAY 
Cl1 Q+'CPC 
c21 u+oPo 
c31 CPC 
c41 cl+OPO 
c51 m-OPU 
C61 Clc'STAGEl' 

:i: 
u+op 0 
PRINT STlM 

c91 u+oPo 
Cl01 Cl+'STAGE2' 
Cl11 ll+opo 
Cl21 PRINT ST2M 
Cl31 OCOPO 
Cl41 f!k'STAGE3' 
Cl51 cl+opo 
Cl61 PRINT STBM 
Cl71 m-OPO 
Cl81 Pk'MMACIY' 
Cl91 c+OPO 
[201 PRINT MMACM 
c211 ll+0P0 
C221 l!l+'STAGE4' 
C231 n+OpO 
[241 PRINT ST4M 
[251 tt+OpO 
c261 O+*STAGES' 
c271 cl+OPO 
C281 PRINT ST5M 
c291 o+ooo 
i301 
c311 
c321 
c331 
c341 
c351 
c361 
c371 
[381 
c391 
c401 
C411 
[421 

V 

P.l+'iQACM' 
o+oPo 
PRINT SQACM 
o+opo 
Ch'STAGB6' 
cl+oPo 
PRINT ST6M 
u+opo 
b-'OVSR' 
u+oPo 
PRINT OVSR 
III+OPO 
o+oPo 

VEXPCOMPC01 
V 2+X EXPCOMP Y;Xl;Yl 

Cl1 x1+21x 
c21 Yl+21Y 
c31 Z+XcY 

V 

vrNCCrl1 
V Z+-IJC X;TiMP;LEN 

Cl1 TEMP+21X 
c21 LEN+pX 
c31 TEMP+TEMP+l 
c41 Z+( LENp2 )TTEMP 

V 
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VINPUTC 01 
V INPUT;ADVEC;ADDIN;MEMADDR;CADDR;DATA 

Cl1 nREAD DATA INTO THE FUNCTIONAL MEMORIES OF TEE CLASSIFIER 
c21 INLP:ADDIN+(G~~O)TO 
c31 ADVEC+( 16~2 )T(BiADDIN) 
c41 aTRE ADDRESS BAS BEEN CONVERTED TO A BINARY BIT STRING 

:z: 
MEMADDR+PIADVEC[~P T 151 
CADDR+PIADVECCB T 111 

II71 PIPE+21ADVEC[4 T 71 
c81 +(v/ADVECCO T 51)/ERROR 
c91 fiTHE TWO HIGR ORDER OCTAL DIGITS SHOULD BE ZERO. 
cl01 nREAD TRE DATA 
El11 DATA+(lSp2)T(8~((6plO)~o)) 
Cl21 nWHICR MEMORY ARE WE LOADING? 
El31 +(CADDR=O)/MfJ 

::z: 
+(CADDR=l)/SIG 
+((CADDRr2)A(CADDRs9))/MPY 

C161 +(CADDR=IO)/KSB 
Cl71 +(CADDR=ii )/LOG 
Cl81 *ERROR 
Cl91 nLOAD THE MEAN RAM 
c201 MU:iYURAMCPIPE;MEMADDR;l+-DATAC4 T 111 
c211 +INLP 
:;;; f;;;'ARRAMI:PIPE;MEMADDR;I+-DATAC4 T 151 

C241 MPY:CADDR+CADDR-2 
[251 CORAMCPIPE;CADDR;MEMADDR;l+-DATAL.4 T 111 
c261 +.TNLP 
[271 KSQ:KRAMCPIPE;l+-DATAC4 T 151 
C281 +INLP 
t291 LOG:LRAMCPIPE;l+DATAC4 T 151 
c301 +INLP 
[311 ERROR:l+'ERROR' 
c321 +INLP 

V 

VLCHANCOI 
V LCHAN 

Cl1 I+0 
II23 CHANNEL[I ;I+COMP CHANNELCI;] 
c31 I+I+l 
c41 +2 

V 

VLICOI 
v LI 

Cl1 I+0 
c21 IRAM[l;l+(4p2)~1 
c31 I+I+ 1 
c41 +2 

V 

V,YPYEEC01 
V 2+X iYPYEE Y;Yl;Xl;Zl;TEMP 

Cl1 niYULTIPLY ROUTINE FOR MATRIX PRODUCT 
c21 nAN EIGHT BY EIGHT PRODUCT HIGH 10 BITS A.?E SELECTED 
c31 SIN+0 
c41 Xl+ABS X 
L-51 Yl+ABS Y 
c61 Z1+Xl*Yl 
c71 TEMP+( 16p2)TZl 
[81 +(-SIN)/PLUSEE 
c91 TEMP+COMP TEIYP 
c 101 PLUSEE:Z+TE,YPCllOl 
Cl11 OVF+O 

V 
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VWPYETC 01. 
V Z+X MPYET Y;Xl;Yl;Zl;TEE4P 

Cl1 nEIGHT BY TEN MULTIPLICATION 
c23 SIN+0 
c31 Xl+ABS. X 
c41 Yl+ARS Y 
c51 21+X1xY1 
c61 TE?dP+(20p2)~Zl 
c71 nFINAL PRODUCT BITS ARE SELECTED FRO;4 TE:'4P 
c81 +(-sYN)/PLuSET 
c91 TEMP+COMP TEMP 
Cl01 PLUSET:Z+TEMPC01,TEMP[6 T 121 
Cl11 ROVERFLOW IS COMPUTED 
[12] OVFc-((h/TE;4P[O T 51)~(v/TENPCO T 51)) 

V 

VMPYTTCOI 
V Z+X MPYTT Y;Xl;Yl;Zl;TEMP 

Cl1 R TE,N BY TEN MULTIPLY 
c21 Xl+ABS X 
Cal Yl+ABS Y 
141 Zl'+X1xY1 
c51 TEMP+( 2Op2)TZl 
c61 Z+TEHPCl T 121 

V 

v~YPY121occlI 
V Z+X MPY1210 Y;Xl;Yl;Zl 

Cl1 x1+21x 
c21 Yl+21Y 
c31 Zl+XlxYl 
c41 Z+(22p2)TZl 

P 

V;4TXMXIC 01 
V Z+MTXsYXI 

Cl1 Z+((-cPc[-])v(-ECHAN))~CPC~21~(-&w[31) 
V 

V,YTXOPCOJ 
V Z+MTXOP 

Cl1 Zc(21CPCcl T 31)+5 
c21 +(Z<E)/O 
Cal D-Z-8 

V 

VOUTC01 
V Z+OUT X;LEN;TEMP 

Cl1 LEN+pX 
E21 LEN+r(LEN+B) 
c31 TEMP+PIX 
c41 TEMP+(LENPE)TTE!~P 
c51 Z+lOlTEMP 

V 
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V PRINT X;IMAX;JMAX;I;J;DIIY;K;KMAX;OVEC 
Cl1 nROUTINE TO DISPLAY WEMORIES. 
c21 CASE+ppX 
c31 nFIND THE RANK OF THE MEMORY 
c41 +(CASE+l)/SNOT 
c51 RA SINGLY DIMENSIONED ARRAY (LATCH) 
[61 U+OUT x 
c71 +o 
E81 SNOT:+(CASE*2)/DNOT 
c91 A A DOUBLY DIiYENSIONED MEMORY 
Cl01 DIM+pX 
Cl11 IMAX+DIMCO1 
Cl21 I+0 
Cl31 OVEC+OpO 
Cl41 DLP:OVEC+OVEC.OUT X[Y;1 
Cl51 I+Itl 
cl61 +(I<fMAX)/DLP 
Cl71 q +OVEC 
il8j +O 
Cl91 DNOT:+(CASE*3)/TNOT 
[203 AA TRIPLY DIMENSIONED ARRAY 
C211 DIM+pX 
C22 1 JMAX+DIMCOl 
[231 IMAX+DIMC11 
c241 KMAX+1 
c251 K+l 
[261 QLP:J+O 
[271 TLP:OVEC+OpO 
[281 I+0 
C291 TLPP:+(CASE*3)/SKPP 
C301 OVEC+OVEC.OUT XCJ;I;1 
c311 +SKPPt 1 
[321 SKPP:OVEC+OVEC,OUT XCK;J;I;I 
c331 I+ltl 
c341 +(IdMAX)/TLPP 
C351 O+OVEC 
c361 J+Jtl 
c371 *(J<JMAX)/TLP 
[381 n+OpO 
C391 K+K+l 
c401 +(K<KMAX)/QLP 
c411 +o 
C421 nQUADRUPLY DIMENSIONED ARRAY 
C431 TNOT:DIM+pX 
C441 KMAX+DIMCOl 
E451 JMAX+DIMCll 
[461 IMAX+DIMC21 
C471 K+O 
[481 -+0&P 
c491 4 

V 

. ..I.. -mmlllmml .---..--- 
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V RESET 
‘Cl1 STlM+CLEAR STlM 
c21 

.c31 
c41 
c51 
C61 
c71 
ES1 
c91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
cl61 
Cl71 
El81 
Cl91 
c201 
c211 

V 

STlS+CLEAR STlS 
STSM+CLEAR STPM 
STSS+CLEAR STSS 
STBM+CLEAR ST3M 

,STSS+CLEAR STBS 
MMACM+CLEAR MMACM 
MMACS+CLEAR MMACS 
ST4M+CLEAR ST4M 
CPC+CLEAR CPC 
ST4Sd'LEAR ST4S 
ST5MdLEAR STSM 
STSS+CLEAR STSS 
STBM+CLEAR STBM 
ST6SdLEAR STBS 
OVLM+CLEAR OVLM 
OVLS+CLEAR OVLS 
OVSR+CLEAR OVSR 
SQACM+CLEAR SQACM 
SQACS+CLEAR SQACS 
ICY+0 

VSAMXICOI 
V Z+SAiYXI 

Cl1 ~+((-CPC[~])V(-ECHAN))ACPC[~~~~F~~~~ 
V 

VSHOVCOI 
V SHOV 

Cl1 nSHIFT ROUTINE FOR OVERFLOW SHIFT REGISTER/ 
c21 OVLMCO;l+OVSR~O;l2 T 191 
c31 *(-ECHAN)/FOUR 
t-41 OVSRCO;l+O,OVSR~O;O T 181 
CSI -*(FOURt2) 
[61 FOUR:OVSR[O;lO T ~91+0VSRC0;51,0VSRC0;10 T 181 
c ,7 1 OVSR[O;O T 514O.OVSRCO;O T 41 
[81 OVSRL-0; 20 211+DETECT,OVSRC0;201 

V 

VSQACLO 

;01 
V Z+X SQAC Y;Xl;Yl;Zl 

Cl1 x142 1x 
II21 Yl42lY 
c31 Zl+X1tYl 
c41 Z+(16p2)TZl 

V 

OTC 01 
V Z+X T Y 

Cl1 z+(I((Y-x)tl))tx 
V 
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A.2 THE APL PREPROCESSOR SIMULATION 

A Simulation of the ratio module of the pre-processor was also written in APL. The hard- 

ware and block diagram are described in the text in Section 2.4.3. A listing of the sini&tion 

and a sample run are given in the following pages. , 
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I 

V MAIND 

II I I I. 

I 

Cl1 
121 
c31 
II41 
c51 

:7: 
[81 
c91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
cl61 
Cl71 
Cl81 
Cl91 
c201 
c211 
c221 
1231 
[241 
C251 
[261 
c271 
[281 
c291 
c301 
c311 
[321 
c331 
c341 
L-351 
[361 
c371 
c381 
c391 
c401 
LSll 
c421 
c431 
c441 
c451 
c461 
c471 
[481 
CSSI 
c501 

nPRENORMALIZATION FOR DIVISION 
nINPUTS ARE DIVDND. DIVSOR 
nPRENORMALIZATION IS DONE IN ONE CLOCK 
DSGN+DIVSORSCOI 
SO+-DSGN 
CX+DSGN 
ATAKE THE ABSOLUTE VALUE OF THE DIVISOR 
ANEGATIVE RESULT IMPLIES OVERFLOW fN ABSOLUTE VALUE COMPUTATION. 
BUS412pO ACL12 DIVSORS 
ABSOV+BUSCOl 
nPRIOE IMITATES THE ACTION OF THE PRIORITY ENCODERS. 
SC+PRIOE(-BUSCl T 111) 
nSC IS A 5 BIT VECTOR AO,Al,AP,A3,OVF 
ASHIFTING IS DONE NEXT 
BUS+BUSC(SCCOlxE)T ll1.(SC~O1~8)pO 
nTHH ABOVE LINE SHIFTS 0 OR 8 POSfTIONS 
SN421SCCl T 31 
BUS+-(BUSCSN T 111,SNpO) 
nSHIFT 0 THROUGH 7 WITH A COMPLIMENT. 
AINVERT SHIFTED RESULT 
DSTOM+-BUS 
nEXPONENT COMPUTATION FOLLOWS 
CYF+l 
EBUScSCRAMC2 T 71ADD6(0 0 ,SCCO T 31) 
PRSTOM+DIVDNDS 
RTRE DIVIDEND BECOMES THE FIRST PARTIAL REMAINDER 
QESTOM+EBUS 
DOSTOM+-(SC[41*(-ABSOV)) 
DSSTOM+DSGN 
ANON-RESTORING DIVISION 
ADONE IN THREE STAGES 
@LATCHING PROVIDED FOR DIVISORsPARTIAL REMAINDER,AND QUOTIENT 
ASTAGE 1 
AQUOTIENT IN QSTOS+l2 p 0 
ADIVIDEND IN DSTOS+l2 p 0 
APARTIAL REMAINDER IN PRSTOS+l2 p0 
DSSTlM+DSSTOS 
DOSTlM+DOSTOS 
QESTlM+QESTOS 
DSTlM+DSTOS 
QESTlM+QESTOS 
ACARRY DIVISOR ALONG. 
ASOI IS PASSED ONTO THE DIVIDE CARD. 
SOI+PRSTOSCOl 
nN0 SHIFT TRIS TIME. 
PRSTlM+PRSTOS DIV DSTOS 
ACOMPUTE 4 QUOTIENT BITS AND A NEW PARTIAL REMAINDER 
QSTlM+QSTOSt4 T lll,QOUT 
ADIVIDE STAGE 2 
DSSTSM+DSSTlS 
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c511 
c521 
c531 
c541 
c553 
C561 
c571 
[SE] 
c591 
[SO1 
c611 
[621 

::t: 
c651 

DOST2M+DOSTlS 
QESTPM+QESTlS 
DSTPM+DSTlS 
QESTPM+QESTlS 
SOI+PRSTlSCO] 
PRST2M+(PRSTlSCl T 111,O)DIV DSTlS 
QST2M+QSTlS[4 T 111,QOUT 
ADIVIDE STAGE THREE 
DSSTBM+DSST2S 
DOST3M+DOST2S 
QEST3M+QEST2S 
DSTBM+DSTSS 
QEST3M+QEST2S 
SOIcPRST2SCO1 
PRST3)4+(PRSTPS[l T lll.O)DIV DSTPS 

C661 QST3M+QST2SC4 T 111,QOUT 
‘(671 nPOST NORMALIZATION TAKES PLACE IN ONE CLOCK. 
C681 nTHE INPUTS ARE QST3S.QEST3S.DSST3S.DOST3S. 
C691 nFIRST WE MUST TAKE THE ABS VALUE OF Q AND COMPUTE QSGN. 
C701 MSB+-QST3SCOl 
1711 QSGN+MSBsDSSTBS 
C721 SO+QSTSSCOl 
C731 CX+MSB 
C741 LSB+-PRSTJSCOI 
C751 QBUS+(l2pO)ACLl2(QST3SCl T 111,LSB) 
C761 ABSOV+COUT 
1771 ATHIS TWO'S COMPLIMENT NUMBER IS CONVERTED TO.SIGN MAGNITUDE 
CT81 nA SHIFT DIRECTION AND AMOUNT. 
C791 CX+QEST3SCOl 
CEO1 SO+-CX 
C811 aQEST3S HAS A TWO'S COMP SHIFT COUNT. 
C821 LEFT+-EBUSCO] 
C831 CX+-LEFT 
[841 SO+LEFT 
[ES] ADDOUT+(EpO)ACLE(O 0 .QEST3S) 
C861 EBUScADDOUTC2 T 71 
C871 nSHIFT 0 OR EIGHT. 
C881 EIGHT+EBUSC21 
[ES] STR+(-LEFT)hEIGHT 
C901 QBUS+(-STR)A((EIGHTA(QBUS[E T ~~~.(E~O)))V((-EIGHT)AQBUS)) 
C911 QOVFl+-((EIGHThQBUSCO T ~I)V((-EIGHT)AEPO)) 
C921 QBUSl+QBUS,4pO 
C931 nSN IS A SHIFT COUNT 
C941 SN+21EBUSC3 T 51 
C951 QET+-((-LEFT)A((SNpO),QBUSCO T(7-SN)]))v((LEFT)A(QBUSl[SN T(7tSN)l)) 
C961 RSHIFT 0 THROUGR SEVEN RIGHT OR LEFT. 
C971 QOVF2+(-((LEFT)A(((7-SN)pO).QBUS~O TCSN-1)1))).1 
c981 nCOMPUTE THE FINAL OVERFLOW. 
1991 DOST4M+-(DOST3SA(-ABSOV)A(N((-h/BOVFl)V(NA/QOVF2))~ANV/EBUS~O T 11) 
cl001 CX+QSGN 
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c1013 S0+QSCR 
Cl021 QETS+(8PO)ACzE QET 
Cl031 QST4~+(CGUT+QSGN).QETS 
Cl043 WASTER TO SLAVE TRARSFERS 
Cl051 DSSTOS+DSSTON 
Cl061 DOSTOS+DOSTOM 
ElO7l'QESTOS+QESTOH 
tlO81 PRSTOS+PRSTOM 
Cl091 DSTOBDSTOH 
[I101 QESTOS+QESTOW 
tllll DSSTlS+DSSTlM 
Cl121 DOSTlS+DOSTlM 
Cl131 QBSTlS+QESTlM 
Cl141 QSTlS+QSTlM 
Cl151 DSTlS+DSTlM 
[I161 PRSTlS+PRSTlM 
Cl171 QBSTlS+QESTlM 
11181 DSSTPS+DSSTPM 
Cl191 DOSTPS+DOSTPM -~. - 
[ 120 1 QEST2S+QEST2M 
Cl211 QST2S+QST2M 
Cl221 DST2S+DST2M 
Cl233 QEST2S+QEST2M 
cl241 PRST2S+PRST2M 
cl251 DSST3S+DSST3M 
l-1261 DOST3S+DOST3M _-~ - 
cl271 QST3S+QST3M 
cl281 QEST3S+QEST3M 
I1291 PRST3S+PRST3M 
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1. - 

V 
Cl1 
c21 

::: 
CSI 
C61 
171 

c31 
c41 
c51 
[61 
c71 

V 
Cl1 
c21 
CSI 
CSI 

V 
Cl1 
c21 
c31 
c41 
c51 
C61 
r.71 
CEI 
t91 
Cl01 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
cl61 
Cl71 
Cl81 
Cl91 
c201 
c211 
c221 

V 
Cl1 
c21 
c31 
t41 
CSI 
[61 
c71 

.V Z+X T Y 
Cl1 z+(l((Y-x)+l))+x 

D-X ACZlP Y;Xl;Pl;Zl;TEMP 
Y4SOAY)V( (-SO IA--Y) 
x1+21x 
rl+21Y 
zl+xl+Xl+cx 
TEMP+(l3p2 1~21 
CODT+TEMPCOl 
Z+TEMP[l T 121 

2+X ACZE Y;Xl;Yl:Zl;TEMP 
Y+(soAY )v( (-SO )AyY) 
Xl+2rX 
Yl+2U 
zl+xl+Y1tcx 
TEMP+(9p2 jr21 
Z+TEMPCl T 81 
COUT+TEMPCOl 

Z+X ADD6 Y;Xl;Yl;Zl 
x1+21x 
Yl+2LY 
Zl+XltYltCYF 
Z+(6p2)TZl 

RPP4+PR DIV DIVISOR 
BOUT+-SOI 
a.50 DETERMINES WHETHER WE ADD OR SUBTRACT. 
so+so1 
cx+T!To 
PR+PR ACLl2 DIVISOR 
SO+PRCO] 
cx+-so 
PR+PRCl T 111.0 
A THE PARTIAL REMAINDER IS SHIFTED. 
QOUT+QOUT.-SO 
PR+PR ACLIP DIVISOR 
SO+PRCO] 
cx+-so 
PR+PR[l T 111.0 
QOUT+QOVT.-SO 
PR+PR ACL12 DIVISOR 
SO+PRC 01 
cx+-s 0 
PR+PRCl T ii].0 
QOVT+QOUT.-SO 
PR+PR ACL12 DIVISOR 
RPP4cPR 

SC+PRIOE X;OVFC;SCN 
SCN+O 
LP:+((-X[SCN])v(SCN=lO))/OUT 
SCN+SCNtl 
+LP 
AFIND THE RICHEST ORDER ZERO BIT 
OCIT:SC+((~~~)TSCN),-XCSCNI 
nIF X[SCN]=l WE MUST HAVE OVERFLOW (STRING OF ALL ONES) 

I 
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SCRAM 
1 11 11110 

DIVDNDS 
001000110000 

DIVSORS 
1110010 0 0 0 0 0 

MAIND 
MAIND 
MAIND 
MAIND 
TAMAINDc(ll29)tl 
MAIND 

MAINDC41 1 
MAINDCS] 0 
MAINDC61 1 
MAINDC91 0 0 0 1 1 1 0 0 0 0 0 0 
MAINDClO] 0 
MAINDCl21 0 0 1 0 1 
MAINDCIS] 0 0 0 1 1 1 0 0 0 0 0 0 
MAINDCl71 2 
MAINDC181 1 0 0 0 1 1 1 1 1 1 1 1 
MAINDC21.1 0 l 1 1 0 0 0 0 0 0 0 0 
MAINDC 23’1 1 
MAINDC241 0 0 0 0 0 1 
MAIND[25] 0 0 1 0 0 0 1 1 0 0 0 0 
MAINDC271 0 0 0 0 0 1 
MAINDC281 1 
MAINN 291 I 
MAINDC371 
MAINDC381 
MAIND[39] 
MAIND[401 
MAINDC411 
MAINDC441 
MAIND[:46] 
MAINDC481 
MAINDC501 
MAINDCS 11 
MAINDI: 521 
MAINDC53 1 
MAINDC 541 
MAINDC551 
MAINDC561 
MAINDC 571 
MAINDC591 
MAINDC601 
MAINDC611 
MAINDC621 
MAINDC631 
MAINDc641 

1 
. 
~00001 
011100000000 
0 0 0 0 01 
0 
110010000000 
000000001001 
1 

~00001 
01110 0 0 0 0 0 0 0 
0 0 0 0 0 1 

;00100000000 
000010010100 
1 
1 
0 0 0 0 01 
01110 0 0 0 0 0 0 0 
0 0 0 0 01 
1 

MAINDi65j 1 0 0 1 0 0 0 0 0 0 0 0 
MAIND[66] 1 0 0 1 0 1 0 0 0 0 0 0 
MAINDC701 0 
MAINDC 711 1 
MAINDC721 1 
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MAINDt 731 0 
MAINDt 741 0 
MAIND[751 0 0 1 0 1 0 0 0 0 0 0 0 
MAINDC761 0 
MAINDC 791 0 
MAINDt801 1 
MAINDC 821 1 
MAINDC831 0 
MAINPt841 1 
MAINDC851 0 0 0 0 0 0 0 l 
MAINDC861 0 0 0 0 0 1 
MAINDC881 0 
MAINDC891 0 
MAIND[90] 0 0 1 0 1 0 0 0 0 0 0 0 
MAINDC911 1 1 1 1 1 1 1 1 
MAIND[92] 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
MAINDC941 1 
MAINDC951 1 0 1 0 1 1 1 1 
MAINDC971 1 1 1 1 1 1 1 1 
MAINDC991 0 
MAINDCIOOI 1 
MAINDClOll 1 
MAINDClO21 1 0 1 1 0 0 0 0 
MAINDCl031 1 1 0 1 1 0 0 0 0 
MAlND[lO51 1 
MAINDC 1061 1 
MAINDClO71 0 0 0 0 0 1 
MAINDCl08] 0 0 1 0 0 0 1 1 0 0 0 0 
MAIND[lO91 0 1 1 1 0 0 0 0 0 0 0 0 
MAINDCllOl 0 0 0 0 0 1 
MAINDCl111 1 
MAINDC1121 1 
MAINDCl131 0 0 0 0 0 1 
MAINDC1141 0 0 0 0 0 0 0 0 1 0 0 1 
MAINDC1151 0 1 1 1 0 0 0 0 0 0 0 0 
MAINDCll61 1 1 0 0 1 0 0 0 0 0 0 0 
MAINDCl171 0 0 0 0 0 1 
MAINDCl181 1 
MAINDCll91 1 
MAINDC1201 0 0 0 0 0 1 
MAINDC1211 0 0 0 0 1 0 0 1 0 1 0 0 
MAINDCl221 0 1 1 1 0 0 0 0 0 0 0 0 
MAINDCl23J 0 0 0 0 0 1 
MAINDCl241 1 0 0 1 0 0 0 0 0 0 0 0 
MAINDCl251 1 
MAINDCl261 1 
MAINDCl271 1 0 0 1 0 1 0 0 0 0 0 0 
MAINDCl281 0 0 0 0 0 1 
MAINDCl291 1 0 0 1 0 0 0 0 0 0 0 0 
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